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Abstract 

Background Metabolic dysfunction-associated steatotic liver disease (MASLD) is a primary cause of chronic liver 
disease, with potential progression to cirrhosis and hepatocellular carcinoma (HCC). Although systemic inflamma-
tory biomarkers are associated with liver diseases, their specific role in MASLD remains unclear. This study examines 
the association between systemic inflammatory biomarkers and MASLD.

Methods This cross-sectional study enrolled 6613 adults aged 20 years or older from the National Health and Nutri-
tion Examination Survey (NHANES) spanning from 2017 to March 2020. Among these participants,, 34.67% were 
aged 40–59 years, 50.85% were female, and 63.26% were Non-Hispanic White. We investigated 10 inflammatory 
biomarkers: ALI, SIRI, SII, SIPS, IBI, NLR, PLR, CAR, LMR, and PNI. Logistic regression models were performed to assess 
the linear association between systemic inflammatory biomarkers and MASLD. Restricted cubic spline (RCS) regres-
sion was employed to explore potential nonlinear relationships between biomarkers and MASLD risk. Additionally, 
subgroup analyses were conducted to examine the influence of various demographic and clinical characteristics 
on the observed associations.

Results After adjusting for key confounders, NLR and PLR exhibited negative association with MASLD risk, while ALI, 
CAR, and PNI exhibited the opposite association (P < 0.05). Most biomarkers, including ALI, SIRI, IBI, CAR, LMR, and PNI, 
exhibited significant non-linear correlations with MASLD (P < 0.05). Subgroup analyses revealed substantial age-
related differences in the association between ALI and MASLD risk, as well as varying relationships between PNI 
and MASLD risk across various cardiovascular outcomes (P < 0.05).

Conclusion Systemic inflammatory biomarkers are significantly associated with MASLD risk. Large-scale prospective 
studies are warranted to confirm these findings and elucidate the underlying mechanisms.
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Introduction
Metabolic dysfunction associated steatotic liver disease 
(MASLD), formerly termed as non-alcoholic fatty liver 
disease (NAFLD), was officially renamed in June 2023 
[1]. In the United States, the prevalence of metabolic 
dysfunction-associated steatotic liver disease (MASLD) 
is notably high, affecting 29.8 – 45.2% of the population 
[2–4]. In the United Kingdom and Asia, the prevalence 
of MASLD is approximately 30.5–32.95% [5, 6]. Mean-
while, its incidence is rising due to the increasing rates 
of obesity and diabetes [7, 8]. It is estimated that the 
global prevalence of MASLD may reach 55.4% by 2040 
if current trends continue [9]. MASLD is characterized 
by hepatocyte steatosis and excludes the influence of 
viruses, alcohol, and autoimmune factors. It is accompa-
nied by cardiometabolic risk factors, including high body 
mass index (BMI) and diabetes [10]. The specific patho-
genesis of MASLD remains largely unknown; however, 
complex regulation of lipid metabolism, involving mem-
brane transport proteins, metabolic enzymes, and tran-
scription factors, are believed to play a critical role in its 
development [11]. Approximately 20% of individuals with 
MASLD may progress to metabolic dysfunction-associ-
ated steatohepatitis (MASH), which can lead to cirrhosis 
and hepatocellular carcinoma (HCC), posing a signifi-
cant public health risk [12]. While liver biopsy is the gold 
standard for the diagnosis of MASLD [13], its invasive-
ness extremely limits its clinical application. Therefore, 
there is an urgent need to discover novel and reliable bio-
markers for the diagnosis and monitoring of MASLD.

Inflammation represents the body’s innate response to 
tissue injury or infection [14], leading to the release of 
various inflammatory mediators. Persistent inflamma-
tion can lead to chronic systemic inflammatory changes 
[15], exacerbating tissue damage. Systemic inflamma-
tion is widely recognized as a key pathophysiological 
mechanism in liver steatosis [16]. Systemic inflamma-
tory biomarkers such as the systemic immune inflamma-
tion index (SII), systemic inflammation response index 
(SIRI), and lymphocyte-to-monocyte ratio (LMR) were 
obviously increased in NAFLD and closely related with 
NAFLD risk [17–19]. Nonetheless, as a newly raised 
conception, the specific mechanism of MASLD remains 
elusive.

National Health and Nutrition Examination Survey 
(NHANES) (www. cdc. gov/ nchs/ nhanes) is designed to 
assess the health and nutritional status of adults and chil-
dren in the United States. The survey is distinctive in that 
it incorporates both physical examinations and inter-
views. Several cross-sectional, nationally representative 
health examination surveys are part of the NHANES pro-
gram. Questions about demographics, health insurance 
status, dietary habits, acute and chronic medical issues, 

mental health, and prescription drug use are all included 
in the health interview. Exam components can change 
between survey cycles but typically include blood pres-
sure, dental exams, vision, hearing, dermatology, fitness, 
balance and strength testing, respiratory testing, taste 
and smell, and body measurements (weight, height, skin 
folds, body composition scans). Hematology, organ and 
endocrine function (e.g., thyroid, kidney), environmental 
exposure, dietary biomarkers, metabolic and cardiovas-
cular health, and infectious disease are some laboratory 
components. The extensive data provided by NHANES 
makes it an ideal resource for studying the relationship 
between systemic inflammatory biomarkers and MASLD.

This study aimed to comprehensively investigate the 
association between systemic inflammatory biomark-
ers—including the advanced lung cancer inflammation 
index (ALI), Scottish inflammatory prognostic score 
(SIPS), inflammatory burden index (IBI), platelet-to-lym-
phocyte ratio (PLR), C-reactive protein-to-albumin ratio 
(CAR), prognostic nutritional index (PNI), neutrophil-to-
lymphocyte ratio (NLR), as well as SIRI, SII, and LMR—
and the risk of MASLD.. Employing a cross-sectional 
study design from the NHANES, we utilized a substantial 
and representative sample from the national population 
to conduct a comprehensive analysis, to investigate the 
association of these markers with MASLD risk.

Methods
Survey description
The data for this study were retrospectively collected 
from NHANES, a biannual, cross-sectional survey 
designed to monitor the health and nutritional status of 
the non-institutionalized, civilian U.S. population. Using 
a multistage probability sampling approach, NHANES 
gathers data through interviews and physical examina-
tions, adhering to standardized protocols. All procedures 
were conducted in compliance with relevant guidelines 
and regulations.

Inclusion and exclusion criteria
A total of 15,560 participants from NHANES 2017 to 
March 2020 were initially included in this study. Among 
this cohort, 6328 individuals aged 20 years or older were 
considered for further analysis. Stringent exclusion cri-
teria were applied to ensure the precision and credibility 
of the findings. Initially, individuals who were expecting 
mothers were omitted. Subsequently, participants with 
incomplete elastography examination data or missing 
information on education, marital status, smoking hab-
its, white blood cell (WBC) count, monocyte (MONO) 
count, neutrophil (NEU) count, lymphocyte (LYM) 
count, platelet (PLT) count, albumin (ALB) level, BMI, 
and C-reactive protein (CRP) were excluded. Finally, 

http://www.cdc.gov/nchs/nhanes
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individuals diagnosed with hepatitis (including hepati-
tis B virus (HBV), hepatitis C virus (HCV), autoimmune 
hepatitis) or liver cancer were excluded from the analysis. 
Consequently, the study included a total of 6613 partici-
pants (Fig. 1).

Assessment of MASLD
Steatotic liver disease (SLD) was defined by a median 
controlled attenuated parameter (CAP) of ≥ 285 dB/m, 
with optimal sensitivity and specificity determined using 
the Youden’s index in liver ultrasound transient elastog-
raphy examination, as previously reported [20, 21]. Alco-
hol consumption was assessed using specific questions 
from the dataset: ALQ130 (Average alcoholic drinks/day 
in past 12 months), ALQ121 (How often drink alcoholic 
beverage in past 12 months), ALQ142 (Days have 4 or 5 
drinks in past 12 months), ALQ280 (Times 8+ drinks in 1 
day in past 12 months), and ALQ290 (Times 12+ drinks 
in 1 day in past 12 months), to calculate weekly intake. 
Participants with a weekly alcohol intake of less than 
140g for females or 210g for males were classified as light 

alcohol consumers. MASLD was defined as SLD com-
bined with light alcohol use and at least one of the follow-
ing cardiometabolic risk factors [22]: (1) BMI ≥ 25 kg/m2 
or waist circumference > 94 cm (for males) and 80 cm 
(for females). (2) Fasting serum glucose ≥ 5.6 mmol/L, 
or 2-hour post-load glucose levels ≥ 7.8 mmol/L, or 
HbA1c ≥ 5.7%, or presence of type 2 diabetes, or under-
going treatment for type 2 diabetes. (3) Blood pressure 
≥ 130/85 mmHg or specific antihypertensive drug treat-
ment. (4) Plasma triglycerides ≥ 1.70 mmol/L or receiv-
ing lipid-lowering treatment. (5) Plasma HDL-cholesterol 
≤ 1.0 mmol/L (for males) and ≤ 1.3 mmol/L (for females) 
or undergoing lipid-lowering treatment.

Calculation of systemic inflammatory biomarkers
Systemic inflammatory biomarkers were calculated using 
the following formulas:

 1.  ALI = BMI ∗ ALB(g/dl) ∗ LYM count/NEU count;

Fig. 1 Flow chart of participants selection
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 2.  SIRI = MONO count ∗NEU count/LYM count;
 3. SII = PLT ∗NEU count/LYM count;
 4.  IBI = CRP(mg/L) ∗NEU count/LYM count;
 5.  NLR = NEU count/LYM count;
 6.  PLR = PLT count/LYM count;
 7.  CAR = CRP/ALB;
 8.  LMR = LYM count/MONO count;
 9.  PNI = (ALB(g/dl) ∗ 10)+ (LYM count ∗ 5);

 
10.

 
SIPS = ALB level score(> 3.5g/dl, 0;≤ 3.5g/dl, 1)+

NEU count score(≤ 7.5× 109/l, 0;> 7.5× 109/l, 1) .

Sociodemographic data
Sociodemographic variables, including age, gender, race, 
marital status, education level, family poverty income 
ratio (PIR), and smoking status, were analyzed in this 
study. Age was categorized into three groups: 20–39 
years, 40–59 years, and ≥60 years. Gender was classified 
as males or females. Race was classified into five groups 
according to the NHANES survey framework: Non-His-
panic White, Non-Hispanic Black, Mexican American, 
Non-Hispanic Asian, and Other Race. The PIR was cat-
egorized into three groups: low (≤1.3), medium (1.3-3.5), 
and high (>3.5). Education level was classified into three 
categories: less than high school, high school or equiva-
lent, and some college or higher. Smoking status was 
determined based on NHANES survey queries, with par-
ticipants categorized as smokers if they had smoked at 
least 100 cigarettes during their lifetime and further clas-
sified as current, former, or never smokers.

Clinical variables
For clinical variables, BMI categories were defined as fol-
lows: normal weight (<25.0 kg/m2), overweight (25.0-30.0 
kg/m2), and obese (>30.0 kg/m2). Diabetes was compre-
hensively defined to include the use of oral hypoglyce-
mic agents, insulin, or self-reported history of diabetes. 
Hypertension was diagnosed if systolic blood pressure 
was ≥135 mmHg or diastolic blood pressure was ≥85 
mmHg, or if there was a self-reported history of hyper-
tension or use of antihypertensive medication. Hyperlipi-
demia was identified by triglyceride levels ≥ 1.7 mmol/L 
or a history of lipid-lowering medication. Cardiovascular 
outcomes were defined as a reported history of heart fail-
ure, coronary heart disease, angina pectoris, or myocar-
dial infarction.

Statistical analysis
The sample size was calculated using the epiR package 
(2.0.75) [23], applying the function epi.sssimpleestb() to 
estimate the required sample size based on a MASLD 
prevalence of 30% [5, 6] and an allowable error of 0.025 
[24]. The calculated sample size was 1,291, which is 

considerably smaller than the actual sample size used 
in our study. Continuous variables are presented as 
means (standard deviation), and categorical variables are 
reported as frequencies (percentages). Weighted t-tests 
were used for continuous variables and weighted chi-
square tests were employed for categorical variables to 
compare baseline characteristics between groups. These 
weighted tests account for the complex survey design 
of the NHANES data, ensuring accurate representation 
of the population. Continuous systemic inflammatory 
biomarkers (ALI, SIRI, SII, IBI, NLR, PLR, CAR, LMR, 
PNI) were stratified into quartiles (Q1, Q2, Q3, and Q4) 
for analysis. This stratification enables the examination 
of potential dose-response relationships. Multifactorial 
logistic regression analyses to assess the impact of these 
biomarkers on MASLD risk. For both continuous and 
categorical (quartile) variables, the lowest quartile (Q1) 
served as the reference group. The results are presented 
as odds ratios (OR) with 95% confidence intervals (CI). 
A trend test was conducted to detect any linear trend in 
MASLD risk across the quartiles of biomarkers.

To control for potential confounding variables, three 
logistic regression models were constructed. The vari-
ables included were selected based on their established 
influence on metabolic dysfunction and liver health. In 
Model 1 (unadjusted), the crude associations were exam-
ined. In Model 2, adjustments were made for age, gen-
der, and race, as these demographic factors are known 
to influence liver disease and inflammatory markers. 
Model 3 included additional adjustments for education, 
PIR, marital status, smoking, BMI, diabetes, and cardio-
vascular outcomes, as these are important lifestyle and 
health-related factors that may confound the relationship 
between systemic inflammatory biomarkers and MASLD. 
By adjusting for these variables, we aimed to isolate 
the effect of inflammatory biomarkers on MASLD risk, 
accounting for factors that influence both the biomarkers 
and the disease. To explore potential nonlinear relation-
ships between systemic inflammatory biomarkers and 
MASLD risk, restricted cubic spline (RCS) regression 
was used. This method allows for the flexible modeling 
of relationships without assuming linearity. Threshold 
analysis was performed to identify any specific points at 
which the relationship between biomarkers and MASLD 
risk changes. Furthermore, to examine whether this rela-
tionship was modified by age, gender, BMI, hypertension, 
hyperlipidemia, and cardiovascular outcome, interaction 
analyses and subgroup analyses were conducted in con-
tinuous variables.

All data analyses were performed using R software 
(https:// www.r- proje ct. org/; version 4.3.2). P < 0.05 was 
considered statistically different.

https://www.r-project.org/


Page 5 of 14Qiu et al. BMC Gastroenterology           (2025) 25:42  

Results
Population characteristics
The study included 6,613 participants, with their demo-
graphic characteristics detailed in Table 1. Among these, 
34.67% were aged 40-59 years, 50.85% were female, and 
63.26% were Non-Hispanic White. The prevalence of 
MASLD was 35.78%. Notably, individuals with MASLD 
comprised the highest proportion in the 40-59 age group 
(38.73%), with a higher male proportion (56.47%), lower 
educational attainment, and a higher prevalence of dia-
betes, hypertension, hyperlipidemia, and cardiovascular 
outcomes compared to those without MASLD. Signifi-
cant differences were observed in most of the systemic 
inflammatory biomarkers, namely ALI, SIRI, SII, SIPS, 
IBI, PLR, and CAR between the MASLD and non-
MASLD groups (P< 0.05). Similar results were obtained 
when these continuous variables were stratified into 
quartiles. Furthermore, hepatic function indices (alanine 
aminotransferase (ALT) and aspartate aminotransferase 
(AST)) and individual components of systemic inflam-
matory biomarkers, namely NEU, LYM, MONO, ALB, 
and CRP, showed significant differences between the 
MASLD and non-MASLD groups (P < 0.05). Figure  2 
illustrates the distribution of MASLD patients catego-
rized by SIPS and the quartiles of continuous systemic 
inflammatory biomarkers. Elevated quartiles of ALI, 
SIRI, IBI, NLR, and CAR were correlated with a height-
ened MASLD prevalence, while increased SIPS levels and 
quartiles of PLR were associated with a lower prevalence. 
It is important to note that the columns of the SIPS dif-
fered significantly from those of other biomarkers due to 
its nature as a categorical variable with values of 0, 1, and 
2. Conversely, quartiles of SII, LMR, and PNI exhibited 
similar proportions of MASLD.

Association of inflammatory biomarkers with MASLD risk
We subsequently explored the association between the 
risk of MASLD and systemic inflammatory biomarkers, 
which revealed significant variances between the MASLD 
and non-MASLD groups. These biomarkers included 
ALI, SIRI, SII, IBI, NLR, PLR, CAR, and SIPS (Table 2). 
Three models were constructed, with adjustments for 
various confounding variables to assess this relation-
ship. After controlling for age, gender, race, education, 
marital status, smoking, PIR, BMI, diabetes, and car-
diovascular outcomes (model 3), significant associations 
were found between MASLD risk and NLR (OR = 0.893, 
95% CI: 0.806–0.8062, P = 0.035) and PLR (OR = 0.997, 
95% CI: 0.997–1.000, P = 0.048). Additionally, signifi-
cant associations were observed when ALI (OR = 1.604, 
95% CI: 1.072–2.402, P = 0.031), CAR (OR = 2.013, 95% 
CI: 1.079–3.755, P = 0.030), and PNI (OR = 1.708, 95% 
CI: 1.161–2.512, P = 0.018) were stratified into quartiles, 

demonstrating a progressive increase in MASLD risk in 
the highest quartile group (Q4) (P for trend < 0.05).

Furthermore, we examined the roles of components 
of systemic inflammatory biomarkers (Supplementary 
Table 1). After adjusting for relevant confounders (Model 
3), we found significant positive associations between 
stratified LYM (OR = 1.843, 95% CI: 1.283–2.646, 
P = 0.009) and CRP (OR = 2.072, 95% CI: 1.151–3.730, 
P = 0.026) levels and MASLD risk, revealing a progres-
sive increase in MASLD risk in the highest quartile (Q4) 
compared to Q1 (P for trend < 0.05).

Dose–response of systemic inflammatory biomarkers 
and MASLD risk
To enhance the robustness of our findings, we further 
analyzed non-linear relationships between continuous 
systemic inflammatory biomarkers and MASLD risk 
using RCS regression model, adjusting for key confound-
ers (Model 3). Significant non-linear associations were 
identified for ALI, SIRI, IBI, CAR, LMR, and PNI with 
MASLD risk (P-non-linear < 0.05, Fig. 3), while no signifi-
cant non-linear correlations were observed for SII, NLR, 
or PLR (P-non-linear > 0.05). Notably, inflection points 
were identified for ALI, SIRI, IBI, CAR, and LMR at val-
ues of 115.196, 2.232, 20.136, 2.086, and 5.520, respec-
tively. For ALI, values below 115.196 showed a positive 
association with MASLD risk, with each unit increase 
corresponding to a 0.001-fold increase in risk, whereas 
values above this threshold were inversely associated 
with MASLD risk, with each additional unit correspond-
ing to a 0.0001-fold decrease in risk. Similar trends were 
observed for SIRI, IBI, CAR, and LMR. For PNI, inflec-
tion points at 47.232 and 57.111 were identified. Between 
these values, each unit increase in PNI was associated 
with a 0.009-fold increase in MASLD risk. Outside this 
range, the relationship weakened, with a 0.003-fold 
increase in risk below 47.232 and a 0.0002-fold increase 
above 57.111. Overall, the majority of systemic inflam-
matory biomarkers exhibited non-linear relationships 
with MASLD risk, indicating that their effects vary at dif-
ferent levels of exposure.

Subgroup analyses
To further investigate the relationship between systemic 
inflammatory biomarkers and MASLD risk, subgroup 
analyses were performed considering age, gender, BMI, 
diabetes, hypertension, and cardiovascular outcomes 
(Fig.  4). In the fully adjusted model (Model 3), a sig-
nificant interaction was observed between ALI and age 
groups regarding MASLD risk (P = 0.048), even after 
adjusting for key covariates including age. Participants 
aged 20–39 showed a significant increase in MASLD 
risk with higher ALI levels, whereas those over 60 did 
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Table 1 Characteristics of the study population

Characteristic Overall, N = 6613 (100.00%)a Non-MASLD, N = 4247 (64.22%)a MASLD, N = 2366 (35.78%)a P  Value2

Age <0.001

 20-39 years 2,072(36.91%) 1,552(41.87%) 520(27.68%)

 40-59 years 2,249(34.67%) 1,339(32.49%) 910(38.73%)

 ≥60 years 2,292(28.42%) 1,356(25.64%) 936(33.59%)

Gender <0.001

 Female 3,391(50.85%) 2,323(54.78%) 1,068(43.53%)

 Male 3,222(49.15%) 1,924(45.22%) 1,298(56.47%)

Race <0.001

 Non-Hispanic White 2,300(63.26%) 1,440(63.51%) 860(62.80%)

 Non-Hispanic Black 1,646(10.49%) 1,182(11.87%) 464(7.94%)

 Non-Hispanic Asian 804(5.77%) 547(6.14%) 257(5.09%)

 Mexican American 832(8.78%) 414(6.82%) 418(12.43%)

 Other Race 1,031(11.70%) 664(11.66%) 367(11.74%)

Marital status <0.001

 Married/Living with partner 3,911(62.74%) 2,389(59.47%) 1,522(68.81%)

 Widowed/Divorced/Separated 1,412(17.70%) 909(18.09%) 503(16.98%)

 Never married 1,290(19.56%) 949(22.44%) 341(14.21%)

Education 0.001

 Less than high school 1,199(10.58%) 745(10.49%) 454(10.74%)

 High school or equivalent 1,562(26.00%) 985(24.11%) 577(29.53%)

 Some college or more 3,852(63.42%) 2,517(65.40%) 1,335(59.73%)

PIR 0.400

 Low income 1,604(20.56%) 1,026(20.32%) 578(21.00%)

 Medium income 2,175(38.19%) 1,390(37.33%) 785(39.79%)

 High income 1,500(41.25%) 970(42.35%) 530(39.21%)

Smoking 0.003

 Now 1,129(15.50%) 786(16.87%) 343(12.95%)

 Former 1,555(25.94%) 896(23.88%) 659(29.78%)

 Never 3,929(58.56%) 2,565(59.25%) 1,364(57.27%)

BMI <0.001

 Normal weight 1,676(26.19%) 1,559(38.11%) 117(3.99%)

 Overweight 2,155(32.42%) 1,498(35.74%) 657(26.26%)

 Obese 2,782(41.39%) 1,190(26.15%) 1,592(69.75%)

Diabetes <0.001

 No 5,579(88.31%) 3,834(94.03%) 1,745(77.67%)

 Yes 1,034(11.69%) 413(5.97%) 621(22.33%)

Hypertension <0.001

 No 4,265(70.83%) 3,020(78.68%) 1,245(56.23%)

 Yes 2,348(29.17%) 1,227(21.32%) 1,121(43.77%)

Hyperlipidemia <0.001

 No 4,754(74.22%) 3,310(80.43%) 1,444(62.67%)

 Yes 1,859(25.78%) 937(19.57%) 922(37.33%)

Cardiovascular outcome <0.001

 No 6,102(93.58%) 3,965(94.92%) 2,137(91.07%)

 Yes 511(6.42%) 282(5.08%) 229(8.93%)

ALT (U/L) 18.00 (13.00, 26.00) 16.00 (13.00, 23.00) 23.00 (17.00, 32.00) <0.001

AST (U/L) 19.00 (16.00, 24.00) 19.00 (16.00, 23.00) 20.00 (17.00, 25.00) <0.001

WBC (1000 cell/mL) 6.90 (5.70, 8.40) 6.70 (5.50, 8.16) 7.40 (6.20, 8.90) <0.001

NEU (1000 cell/mL) 4.00 (3.10, 5.10) 3.80 (3.00, 4.90) 4.30 (3.40, 5.40) <0.001
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Table 1 (continued)

Characteristic Overall, N = 6613 (100.00%)a Non-MASLD, N = 4247 (64.22%)a MASLD, N = 2366 (35.78%)a P  Value2

LYM (1000 cell/mL) 2.10 (1.70, 2.60) 2.00 (1.60, 2.50) 2.20 (1.80, 2.70) <0.001

MONO (1000 cell/mL) 0.50 (0.50, 0.70) 0.50 (0.40, 0.60) 0.60 (0.50, 0.70) <0.001

PLT (1000 cell/mL) 240 (206, 281) 239 (205, 279) 242 (208, 283) 0.200

CRP (mg/L) 1.8 (0.8, 4.1) 1.3 (0.6, 3.2) 2.9 (1.3, 5.8) <0.001

ALB (g/dL) 4.10 (3.90, 4.30) 4.10 (3.90, 4.40) 4.10 (3.90, 4.30) <0.001

ALI 63.10 (45.65, 84.42) 58.09 (43.11, 79.45) 69.51 (52.26, 91.24) <0.001

ALI.quantile.var <0.001

 Q1 1,594 (25.03%) 1,200 (29.75%) 394 (16.25%)

 Q2 1,620 (24.97%) 1,086 (25.89%) 534 (23.27%)

 Q3 1,528 (25.01%) 934 (23.22%) 594 (28.35%)

 Q4 1,871 (24.98%) 1,027 (21.14%) 844 (32.13%)

SIRI 1.06 (0.73, 1.54) 1.00 (0.69, 1.47) 1.15 (0.79, 1.67) <0.001

SIRI.quantile.var <0.001

 Q1 1,973 (25.01%) 1,373 (27.76%) 600 (19.89%)

 Q2 1,599 (25.00%) 1,026 (25.92%) 573 (23.29%)

 Q3 1,490 (24.99%) 935 (23.92%) 555 (26.98%)

 Q4 1,551 (25.00%) 913 (22.40%) 638 (29.84%)

SII 462.02 (336.00, 639.88) 454.69 (331.72, 634.16) 483.83 (350.80, 650.57) 0.040

SII.quantile.var 0.100

 Q1 1,927 (25.07%) 1,277 (26.08%) 650 (23.19%)

 Q2 1,590 (24.95%) 1,048 (25.63%) 542 (23.68%)

 Q3 1,561 (25.00%) 972 (23.98%) 589 (26.91%)

 Q4 1,535 (24.98%) 950 (24.31%) 585 (26.23%)

SIPS 0.020

 0 6,054 (92.91%) 3,932 (93.75%) 2,122 (91.35%)

 1 527 (6.72%) 296 (5.93%) 231 (8.20%)

 2 32 (0.37%) 19 (0.32%) 13 (0.45%)

IBI 3.40 (1.43, 8.53) 2.46 (1.16, 6.63) 5.68 (2.53, 11.66) <0.001

IBI.quantile.var <0.001

 Q1 1,663 (25.00%) 1,336 (31.55%) 327 (12.82%)

 Q2 1,608 (25.01%) 1,097 (27.75%) 511 (19.91%)

 Q3 1,680 (25.00%) 968 (21.08%) 712 (32.27%)

 Q4 1,662 (24.99%) 846 (19.62%) 816 (35.00%)

NLR 1.92 (1.47, 2.54) 1.89 (1.43, 2.50) 1.95 (1.52, 2.60) 0.056

NLR.quantile.var 0.034

 Q1 1,956 (25.01%) 1,315 (26.70%) 641 (21.87%)

 Q2 1,583 (25.05%) 996 (24.32%) 587 (26.40%)

 Q3 1,534 (25.01%) 965 (24.80%) 569 (25.42%)

 Q4 1,540 (24.93%) 971 (24.19%) 569 (26.31%)

PLR 116.67 (93.11, 145.29) 118.82 (95.26, 149.44) 112.07 (89.40, 138.37) <0.001

PLR.quantile.var <0.001

 Q1 1,745.00 (25.01%) 1,021.00 (22.82%) 724.00 (29.10%)

 Q2 1,652.00 (25.05%) 1,041.00 (24.64%) 611.00 (25.81%)

 Q3 1,571.00 (25.00%) 1,017.00 (25.41%) 554.00 (24.24%)

 Q4 1,645.00 (24.94%) 1,168.00 (27.13%) 477.00 (20.85%)

CAR 0.43 (0.19, 1.00) 0.32 (0.15, 0.76) 0.70 (0.32, 1.47) <0.001

CAR.quantile.var <0.001

 Q1 1,553 (25.02%) 1,292 (32.81%) 261 (10.50%)

 Q2 1,595 (24.99%) 1,060 (26.10%) 535 (22.93%)
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not exhibit such association. Additionally, the associa-
tion between PNI and MASLD risk varied significantly 
depending on the presence of cardiovascular outcomes 
(P = 0.006). Specifically, after adjusting for vital covariates 
including cardiovascular outcomes, individuals without 
cardiovascular diseases exhibited an increasing MASLD 
risk with higher PNI levels, while those with cardiovascu-
lar outcomes did not demonstrate such an association. In 
contrast, SIRI, SII, IBI, NLR, PLR, CAR, and LMR exhib-
ited consistent effects on MASLD risk in different age, 

gender, BMI, diabetes, hypertension, and cardiovascular 
outcomes (P > 0.05).

Discussion
As a nascent concept, the associations between MASLD 
and systemic inflammatory biomarkers have received 
limited investigation. In this study, we comprehensively 
investigated the association between a broad range of 
systemic inflammatory biomarkers and MASLD through 
an analysis of the NHANES database. Our findings dem-
onstrated a statistically significant correlation between 

Table 1 (continued)

Characteristic Overall, N = 6613 (100.00%)a Non-MASLD, N = 4247 (64.22%)a MASLD, N = 2366 (35.78%)a P  Value2

 Q3 1,676 (24.99%) 997 (22.16%) 679 (30.26%)

 Q4 1,789 (25.00%) 898 (18.93%) 891 (36.30%)

LMR 3.80 (3.00, 4.76) 3.80 (3.00, 4.80) 3.80 (3.00, 4.75) 0.300

LMR.quantile.var >0.900

 Q1 1,727(28.064%) 1,130(27.733%) 597(28.680%)

 Q2 1,440(22.770%) 901(22.981%) 539(22.376%)

 Q3 1,575(24.196%) 1,036(24.098%) 539(24.379%)

 Q4 1,871(24.970%) 1,180(25.187%) 691(24.566%)

PNI 51.50 (48.50, 55.00)-51.5 (48.5, 
55.0)-52.0 (48.5, 55.0)

51.5 (48.50, 55.00)-51.5 (48.5, 55.0)-
52.0 (48.5, 55.0)

51.50 (48.50, 55.00)-51.5 (48.5, 
55.0)-52.0 (48.5, 55.0)

0.200

PNI.quantile.var 0.800

 Q1 1,873 (25.89%) 1,249 (26.25%) 624 (25.22%)

 Q2 1,618 (24.20%) 1,055 (24.51%) 563 (23.62%)

 Q3 1,711 (26.16%) 1,100 (25.94%) 611 (26.58%)

 Q4 1,411 (23.74%) 843 (23.30%) 568 (24.57%)

Abbreviation: ALT Alanine Aminotransferase, AST Aspartate Aminotransferase, WBC White blood cell, NEU Neutrophil, LYM Lymphocyte, PLT Platelet, ALB Albumin, 
BMI Body mass index, CRP C-reactive protein, ALI Advanced lung cancer inflammation index, SIRI Systemic inflammation response index, SII Systemic immune 
inflammation index, SIPS Scottish inflammatory prognostic score, NLR Neutrophil to lymphocyte ratio, LMR Lymphocyte to monocyte ratio, IBI Inflammatory burden 
index, PLR Platelet-to-lymphocyte ratio, CAR  C-reactive protein to albumin ratio, PNI Prognostic nutritional index
a n (unweighted) (%); Median (IQR)
2 chi-squared test with Rao & Scott’s second-order correction; Wilcoxon rank-sum test for complex survey samples

Fig. 2 Proportion of MASLD patients by quartiles of systemic inflammatory biomarkers
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Table 2 The relationship between inflammatory markers and the risk of MASLD

Markers Model 1 Model 2 Model 3

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

ALI c

ALI (Quartile)

Q1 Ref Ref Ref

Q2 1.646 (1.245, 2.176) 0.001** 1.810 (1.363, 2.404) < 0.001*** 1.302 (0.942, 1.799) 0.086

Q3 2.237 (1.768, 2.830) < 0.001*** 2.598 (2.077, 3.249) < 0.001*** 1.716 (1.270, 2.318) 0.008**

Q4 2.784 (2.177, 3.560)  < 0.001*** 3.633 (2.730, 4.834) < 0.001*** 1.604 (1.072, 2.402) 0.031*

P for trend  < 0.001*** < 0.001*** 0.016*

SIRI 1.200 (1.087, 1.324) < 0.001*** 1.126 (1.022, 1.239) 0.019* 0.988 (0.880, 1.108) 0.799

SIRI (Quartile)

Q1 Ref Ref Ref

Q2 1.255 (1.010, 1.559) 0.042* 1.189 (0.935, 1.512) 0.146 0.880 (0.593, 1.305) 0.418

Q3 1.574 (1.233, 2.010) < 0.001*** 1.482 (1.142, 1.923) 0.006** 0.925 (0.595, 1.439) 0.649

Q4 1.860 (1.478, 2.341) < 0.001*** 1.624 (1.269, 2.077) < 0.001*** 0.934 (0.586, 1.490) 0.707

P for trend < 0.001*** < 0.001*** 0.797

SII 1.000 (1.000, 1.000) 0.300 1.000 (1.000, 1.000) 0.420 1.000 (0.999, 1.000) 0.149

SII (Quartile)

Q1 Ref Ref Ref

Q2 1.039 (0.863, 1.252) 0.672 1.034 (0.844, 1.266) 0.732 0.909 (0.654, 1.263) 0.465

Q3 1.262 (1.000, 1.593) 0.050 1.284 (1.001, 1.647) 0.049 0.928 (0.627, 1.374) 0.626

Q4 1.213 (0.958, 1.537) 0.104 1.215 (0.951, 1.553) 0.112 0.764 (0.558, 1.046) 0.076

P for trend 0.054 0.053 0.096

IBI 1.006 (0.998, 1.013) 0.120 1.005 (0.997, 1.013) 0.178 1.000 (0.995, 1.004) 0.847

IBI(Quartile)

Q1 Ref Ref Ref

Q2 1.765 (1.319, 2.360) < 0.001*** 1.620 (1.180, 2.224) 0.005** 1.181 (0.778, 1.794) 0.330

Q3 3.766 (2.741, 5.173) < 0.001*** 3.701 (2.549, 5.373) < 0.001*** 1.797 (1.016, 3.179) 0.046*

Q4 4.390 (3.001, 6.420) < 0.001*** 4.576 (2.940, 7.124)  < 0.001*** 1.502 (0.820, 2.750) 0.135

P for trend < 0.001*** < 0.001*** 0.084

NLR 1.020 (0.953, 1.091) 0.556 0.971 (0.911, 1.035) 0.339 0.893 (0.806, 0.989) 0.035*

NLR(Quartile)

Q1 Ref Ref Ref

Q2 1.326 (1.079, 1.628) 0.009** 1.279 (1.046, 1.565) 0.020* 1.124 (0.835, 1.514) 0.336

Q3 1.252 (0.980, 1.599) 0.070 1.192 (0.933, 1.523) 0.146 0.933 (0.653, 1.332) 0.616

Q4 1.328 (1.043, 1.690) 0.023* 1.125 (0.879, 1.442) 0.325 0.755 (0.493, 1.155) 0.140

P for trend 0.048* 0.503 0.067

PLR 0.996 (0.994, 0.998) < 0.001*** 0.996 (0.994, 0.998) < 0.001*** 0.997 (0.994, 1.000) 0.048*

PLR(Quartile)

Q1 Ref Ref Ref

Q2 0.822 (0.710, 0.950) 0.010* 0.835 (0.716, 0.972) 0.023* 0.839 (0.633, 1.110) 0.157

Q3 0.748 (0.569, 0.983) 0.038* 0.764 (0.573, 1.018) 0.064 0.813 (0.453, 1.457) 0.380

Q4 0.603 (0.488, 0.745) < 0.001*** 0.586 (0.461, 0.744) < 0.001*** 0.696 (0.472, 1.025) 0.060

P for trend < 0.001*** < 0.001*** 0.099

CAR 1.168 (1.041, 1.312) 0.010* 1.189 (1.036, 1.365) 0.017* 1.022 (0.933, 1.119) 0.580

CAR(Quartile)

Q1 Ref Ref Ref

Q2 2.745 (2.002, 3.764) < 0.001*** 2.631 (1.880, 3.681) < 0.001*** 1.696 (1.047, 2.747) 0.038*

Q3 4.266 (2.879, 6.321) < 0.001*** 4.331 (2.838, 6.611) < 0.001*** 2.192 (1.184, 4.058) 0.024*

Q4 5.991 (3.881, 9.248) < 0.001*** 6.815 (4.125, 11.259) < 0.001*** 2.013 (1.079, 3.755) 0.036*
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*P < 0.05, **P < 0.01, ***P < 0.001

Table 2 (continued)

Markers Model 1 Model 2 Model 3

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

P for trend < 0.001*** < 0.001*** 0.030*

PNI 1.003 (0.993, 1.012) 0.592 1.007 (0.986, 1.030) 0.485 1.017 (0.968, 1.069) 0.427

PNI(Quartile)

Q1 Ref Ref Ref

Q1 1.003 (0.766, 1.314) 0.981 1.044 (0.775, 1.406) 0.762 1.127 (0.692, 1.837) 0.534

Q2 1.067 (0.813, 1.400) 0.627 1.179 (0.874, 1.590) 0.258 1.340 (0.843, 2.131) 0.155

Q3 1.098 (0.888, 1.358) 0.372 1.272 (1.013, 1.596) 0.040* 1.708 (1.161, 2.512) 0.018*

P for trend 0.335 0.034* 0.007**

SIPS

0 Ref Ref Ref

1 1.419 (1.096, 1.837) 0.010* 1.502 (1.168, 1.931) 0.003** 0.911 (0.602, 1.379) 0.589

2 1.423 (0.505, 4.015) 0.488 1.464 (0.487, 4.406) 0.474 0.295 (0.021, 4.097) 0.286

Fig. 3 Dose–response of continuous systemic inflammatory biomarkers and MASLD risk. ***: P < 0.001; **: P < 0.01; *: P < 0.05
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NLR, PLR, stratified ALI, CAR, PNI, and MASLD. Spe-
cifically, elevated NLR and PLR levels were associated 
with a reduced risk of MASLD, consistent with previous 
studies [25, 26]. Conversely, higher ALI, CAR, and PNI 
values were associated with an elevated risk of MASLD. 
Additionally, we observed a nonlinear dose–response 
relationship for most biomarkers, including ALI, SIRI, 
IBI, LMR, PNI, and MASLD. These results underscore 
the vital roles of inflammatory biomarkers in MASLD.

The systemic inflammatory biomarkers included in this 
study are known to be associated with the risk of various 
diseases. For instance, ALI, which reflects both inflam-
mation and nutritional status, has been shown to be a 
prognostic indicator in heart failure [27], asthma [28], 
and various cancer [29–31]. Similarly, SIPS, derived from 
ALB (≥35 g/L) and NEU (<7.5 × 10⁹/L), which indicates 
a better nutritional state and lower inflammation, has 
been associated with survival outcomes in non-small cell 
lung cancer (NSCLC) [32, 33] and HCC [34]. Both NLR 
and PLR, which reflect systemic inflammation, have been 
associated with the risk of acute kidney injury [35], myo-
cardial infarction [36], and rheumatoid arthritis [37]. In 
our study, we observed a significant correlation between 

the risk of MASLD and various systemic inflamma-
tory biomarkers, underscoring the necessity for further 
investigation.

The specific mechanisms of these inflammatory mark-
ers remain largely unknown. In our study, NLR and PLR, 
composed by NEU/LYM and PLT/LYM respectively, 
were negatively correlated with MASLD risk. Mechani-
cally, NEU can modulate the progression of inflamma-
tion through the expression of myeloperoxidase (MPO), 
which inhibits the initiation of the adaptive immune 
response by suppressing T cell proliferation, cytokine 
production, and the T helper 1 (Th1)/T helper 2 (Th2) 
cell ratio, thereby exerting anti-inflammatory effects in 
MASLD [38–40]. PLT can influence immune responses 
through direct interactions with NEU and the release of 
soluble mediators, such as chemokines, angiogenic fac-
tors, and growth factors [41]. Additionally, PLT modulate 
the function of liver sinusoidal endothelial cells by stimu-
lating the secretion of hepatocyte growth factor (HGF) 
from hepatic stellate cells [42, 43] . As to LYM, which 
encompasses T cells, B cells, and natural killer (NK) 
cells, plays crucial roles in immunity. LYM may promote 
MASLD through activation of CD4 and CD8 T cells via 

Fig. 4 Subgroup analyses of continuous systemic inflammatory biomarkers and MASLD risk. ***: P < 0.001; **: P < 0.01; *: P < 0.05
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antigen presentation and by secreting cytokines such as 
interlukin-6 (IL-6) and tumor necrosis factor (TNFα), 
thereby faciliating the development of inflammation [44] 
. These findings may elucidate the anti-MASLD roles of 
NLR and PLR.

In contrast, ALI, CAR, and PNI were found to exert 
pro-MASLD roles in this study, with these indices being 
composed of ALB, BMI, CRP, LYM, and NEU. Elevated 
ALB levels are associated with increased insulin resist-
ance, a key driver in the development of MASLD, poten-
tially promoting hepatic fat deposition [45]. Conversely, 
ALB deficiency may reduce plasma free fatty acid con-
centrations, thereby decreasing hepatic steatosis and 
inflammation [46]. This suggests that higher ALB lev-
els, central to both ALI and PNI, may contribute to an 
increased risk of MASLD. Additionally, BMI is a critical 
promoter of MASLD, with overweight and obese individ-
uals comprising 96% of the total MASLD patients in our 
study. Furthermore, CRP can recognize microorganisms 
and apoptotic cells via phosphocholine binding [47], pro-
moting the phagocytosis of phosphorylated substances 
by activating the classical complement pathway [48]. CRP 
may exert a stronger pro-inflammatory role than ALB 
in MASLD, contributing to the positive CAR-MASLD 
relationship.

In addition to systemic inflammation biomarkers, their 
components, namely NEU, LYM, PLT, MONO, ALB, and 
CRP, which collectively contributed to the inflammatory 
cascade, were predominantly differentiated expressed in 
MASLD and non-MASLD groups in our study, under-
scoring the critical role of inflammation in MASLD. 
Moreover, ALT and AST levels were notably elevated in 
MASLD patients, indicating hepatocyte damage and dys-
function caused by inflammation and steatosis.

Further subgroup analyses revealed notable differ-
ences in the relationship between ALI and MASLD risk 
across different age groups. This may be due to ALI being 
more reflective of inflammation related to nutritional 
status and body weight, both of which are significantly 
affected by age-related changes. However, other systemic 
inflammatory biomarkers may represent more consist-
ent systemic inflammation, which does not fluctuate sig-
nificantly with age, leading to no significant differences 
across age groups. Moreover, the associations between 
PNI and MASLD risk varied significantly across different 
cardiovascular outcome states. This may be attributed 
to the components of PNI, ALB and LYM, which may 
more sensitively reflect the state of cardiovascular dis-
eases more sensitively, consistent with previous reports 
[49–51].

Several limitations should be considered when inter-
pretating our results. First, due to the cross-sectional 
design of NHANES, we were unable to establish causal 

relationships between systemic inflammatory biomark-
ers and MASLD. To address this limitation, future 
research should consider conducting longitudinal 
studies or randomized controlled trials that can assess 
temporal associations and potential causal pathways. 
Second, as liver ultrasound transient elastography data 
were available only for NHANES from 2017 to March 
2020, our study sample was relatively small. Therefore, 
expanding the study to include a larger sample size and 
a longer follow-up period would help validate our find-
ings and enhance the generalizability of the results. 
Finally, despite careful adjustment for key covariates, 
residual confounding remains a potential concern. 
Future studies should aim to incorporate additional 
covariates not unavailable in NHANES, such as genetic 
predispositions or more detailed clinical data, to miti-
gate the risk of residual confounding. Moreover, incor-
porating dynamic biomarker measurements over time 
will help clarify their role in MASLD progression and 
provide a more comprehensive understanding of their 
impact on disease outcomes.

Our study has several strengths. While previous stud-
ies have examined the roles of some biomarkers in the 
context of liver disease, this study uniquely investi-
gates a broad range of inflammatory markers and their 
non-linear relationships with MASLD risk. Addition-
ally, the incorporation of inflection points in biomark-
ers such as ALI, SIRI, IBI, and PNI represents a novel 
approach in understanding how these biomarkers inter-
act with MASLD across different thresholds. The use of 
NHANES data enables access to a large, nationally rep-
resentative sample, enhancing the generalizability of the 
findings. Furthermore, systemic inflammatory biomark-
ers such as NLR, PLR, ALI, CAR, and PNI could serve 
as non-invasive tools for early MASLD screening and 
risk stratification. These biomarkers may also help mon-
itor disease progression and assess treatment response, 
offering a less invasive alternative to liver biopsy. Future 
research should focus on validating their clinical utility 
and exploring their role in personalized management of 
MASLD.

Conclusions
Our study demonstrates significant associations between 
systemic inflammatory biomarkers and MASLD risk 
in U.S. adults. Elevated ALI, CAR, and PNI, along 
with decreased NLR and PLR, are robust predictors of 
increased MASLD risk, highlighting their potential as 
prognostic tools. While causality cannot be inferred 
from this cross-sectional analysis, these results provide 
a foundation for future longitudinal research to validate 
and expand upon these findings
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