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Abstract: Background/Objectives: This study investigated the relationship between single nucleotide
polymorphisms (SNPs) and gastric cancer (GC) risk, while also examining the interaction of genetic
factors with lifestyle variables including the nutrient and bioactive compound intake in Korean adults
of a large hospital-based cohort. Methods: We conducted a genome-wide association study (GWAS)
comparing GC patients (n = 312) with healthy controls without cancers (n = 47,994) to identify relevant
genetic variants. Generalized multifactor dimensionality reduction (GMDR) was employed to detect
SNP interactions between diets and lifestyles. We utilized polygenic risk scores (PRSs) to assess
individuals’ GC risk based on multiple SNP loci. Among the selected SNPs, since SEMA3C_rs1527482
was a missense mutation, bioactive compounds which decrease the binding energy were found
with its wild and mutated proteins by molecular docking analysis. Results: Individuals with high
PRSs exhibited a 4.12-fold increased risk of GC compared to those with low PRSs. Additional
factors associated with elevated GC risk included a low white blood cell count (OR = 5.13), smoking
(OR = 3.83), and low coffee consumption (OR = 6.30). The SEMA3C_rs1527482 variant showed a
positive correlation with GC risk. Molecular docking analyses suggested that certain polyphenols,
including theaflavate, rugosin E, vitisifuran B, and plantacyanin, reduced the binding free energy in
both wild-type and mutated SEMA3C_rs1527482. However, some polyphenols exhibited differential
binding energies between its wild and mutated forms, suggesting they might modulate wild and
mutated proteins differently. Conclusion: High PRSs and SEMA3C_rs1527482 interact with immune
function, coffee intake, polyphenol consumption, and smoking status to influence GC risk. These
findings could contribute to developing personalized nutrition and lifestyle interventions to reduce
GC risk.
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1. Introduction

Gastric cancer remains a significant global health concern, ranking as the fifth most
common cancer worldwide (5.6%) according to 2020 estimates from the International
Agency for Research on Cancer (IARC) [1]. Its mortality rate ranks fourth (7.7%) among
cancers globally [1]. In Korea, the gastric cancer incidence in men was second only to
thyroid cancer as of 2018. The disease primarily manifests as adenocarcinomas, originating
from the stomach’s glandular cells and accounting for 95% of cases, with a notably higher
prevalence in men [2].

The etiology of gastric cancer is multifaceted, involving complex interactions between
bacterial infections, environmental factors, and genetic predisposition. Modifiable risk
factors, including lifestyle and dietary habits, are crucial in gastric cancer development [3].
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Geographic variations in the disease’s presentation suggest that the interplay between
environmental and genetic factors may differ across populations.

Previous genetic studies have identified several single-nucleotide polymorphisms
(SNPs) associated with gastric cancer risk. These include variants in tumor suppressor genes
(cadherin 1 [CDH1], tumor protein 53 [TP53]) [4,5], genes involved in mucosal protection
against Helicobacter pylori (H. pylori) (interleukin-1 beta [IL1B], interleukin-1 receptor antag-
onist protein [IL1RN], and tumor necrosis factor-α [TNF-α]) [6,7], carcinogen metabolism
genes (cytochrome P450 family 2 subfamily E member 1 [CYP2E1], glutathione S-transferase
mu 1 [GSTM1]) [8,9], and those related to DNA repair (methylenetetrahydrofolate reductase
[MTHFR] and X-ray repair cross-complementing group 1 gene [XRCC1]) [10,11]. Recent
research in Korean populations has uncovered additional genetic markers, including pro-
tein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1) [12], mucin 1 (MUC1),
phospholipase C epsilon 1 (PLCE1) [13], and prostate stem cell antigen (PSCA) [14].

While numerous studies have explored the relationship between dietary factors, en-
vironmental influences, and gastric cancer risk, the results have often been inconclusive.
Moreover, genetic investigations have typically focused on individual susceptibility genes
rather than considering the cumulative effect of multiple genetic variants. The concept of
polygenic risk scores (PRSs) offers a more comprehensive approach to assessing genetic
predisposition to gastric cancer.

Limited research has examined the interaction between dietary patterns and combina-
tions of genetic variants in identifying high-risk groups for gastric cancer. Previous studies
have analyzed the association between PRSs and the age at onset of gastric cancer [15]
and predicted gastric cancer risk using PRSs according to H. pylori infection status [16]. A
meta-analysis has also suggested that a healthy lifestyle can mitigate the genetic risk of
gastric cancer [17].

This study aimed to address this gap by investigating the hypothesis that polygenic
variants interact with metabolic parameters, dietary intake, and lifestyle factors to influence
gastric cancer risk. Utilizing data from the Korean Genome and Epidemiology Study
(KoGES), we evaluated the interplay between PRSs for gastric cancer and various factors,
including immune function, lifestyle choices, and environmental exposures in the Korean
adult population. Our findings suggested significant interactions between genetic predispo-
sition and modifiable risk factors, highlighting potential avenues for targeted interventions
to mitigate the gastric cancer risk in genetically susceptible individuals. These results
underscored the need for further research to validate and expand upon these observations,
potentially informing future strategies for early prevention and risk reduction in high-risk
populations.

2. Methods
2.1. Study Population

This study utilized data from the Korea Genomic and Epidemiological Study (Ko-
GES), a large urban hospital cohort study conducted by the Korea Disease Control and
Prevention Agency (KDCA) between 2004 and 2013. The cohort included Korean adults
aged ≥40 years (n = 58,701) who volunteered to participate. The KoGES protocol was
approved by the institutional review boards of the Korean National Institute of Health (Ap-
proval Code: KBP-2015-055, approved on 20 August 2015), and all participants provided
written informed consent.

2.2. Case-Control Selection

Participants were categorized into two groups based on their self-reported gastric
cancer diagnosis. The gastric cancer group (GC, cases; n = 312) comprised individuals
who reported a physician-diagnosed gastric cancer, and subjects with any history of cancer
other than gastric cancer were excluded (n = 10,395) (Figure 1). The non-gastric cancer
group (N-GC, controls; n = 47,994) included participants without any reported cancer
diagnoses. While different cancers might share some biological pathways or risk factors,
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their effects could act as a bias in determining gastric cancer risk. By excluding other
cancers, we reduced the risk of these shared factors obscuring gastric cancer-specific
genetic associations. This targeted approach allowed for a more precise investigation into
the genetic basis and risk factors unique to gastric cancer, potentially leading to clearer
and more robust results. Ultimately, this exclusion criterion helped to isolate the genetic
factors specifically associated with gastric cancer, enabling a more accurate analysis of
its pathogenesis.
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Figure 1. Flow chart for the generation of polygenic risk scores (PRSs) that influence gastric cancer
risk and their interaction with metabolic parameters and lifestyles. KoGES, Korean Genome and
Epidemiology Study; SNP, single nucleotide polymorphism; GWAS, genome-wide association study;
LD, linkage disequilibrium; GMDR, generalized multifactor dimensionality reduction; TRBA, trained
balanced accuracy; TEBA, test balance accuracy; CVC, cross-validation consistency; PRS, polygenic
risk scores.

2.3. Anthropometric and Biochemical Measurements

Demographic information, including age, income, education, alcohol consumption,
smoking history, and physical activity, was collected through health interviews [18]. Educa-
tion levels were categorized as less than high school, high school, and college or higher.
Monthly household income was classified as low (<$2000), medium ($2000–4000), and high
(>$4000). Smoking status was categorized as non-smoker, former smoker, or current smoker,
while alcohol consumption was classified as light drinker (0–20 g/day) or moderate drinker
(>20 g/day) [19].

Anthropometric measurements, including weight, height, and waist circumference,
were taken by trained specialists using standardized procedures. Body mass index (BMI)
was calculated as weight (kg) divided by height (m) squared. Blood samples were collected
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after a minimum 12 h fast to ensure accurate biochemical analysis [20]. A Hitachi 7600
automatic analyzer (Hitachi, Tokyo, Japan) was used to measure fasting glucose, serum
total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-C) levels.
White blood cell (WBC) counts were determined from ethylenediaminetetraacetic acid
(EDTA)-treated blood samples. Blood pressure measurements were taken with participants
in a seated position, with the right arm properly supported at heart level.

2.4. Dietary Assessment

Dietary intake was evaluated using a semiquantitative food frequency questionnaire
(SQFFQ) developed and validated for the KoGES. The SQFFQ covered 106 food items,
assessing long-term dietary patterns based on portion size and frequency of consumption.
Nutrient intake was estimated using the computer-aided nutritional analysis program
CAN-pro version 3.0, developed by the Korean Nutrition Society [21]. The dietary inflam-
matory index (DII) was calculated to assess the pro-inflammatory potential of participants’
diets. The index was computed using 38 food and nutrient components, excluding garlic,
ginger, saffron, and turmeric due to a lack of intake data. DII scores were determined
by multiplying component-specific inflammatory scores by daily intake, summing these
products, and dividing by 100.

2.5. Genotyping and Quality Control

Genomic DNA extraction from whole blood and genotyping were performed by the
Center for Genome Science at the National Institute of Health in Korea using a Korean-
specific gene chip produced by Affymetrix (Santa Clara, CA, USA) [22]. Genotyping
accuracy was determined using the Bayesian robust linear modeling with Mahalanobis
distance genotyping algorithm [22]. Strict quality control parameters were applied to ensure
data accuracy and representativeness, including genotyping accuracy (≥98%), genotype
missing rate (<4%), heterozygosity (<30%), Hardy–Weinberg equilibrium (p > 0.05), and
minor allele frequency (MAF > 0.01) [23].

2.6. Selection of Interacting Genetic Variants for Gastric Cancer

A polygenic risk score (PRS) for gastric cancer was developed using a multi-step
process (Figure 1). Genome-wide association study (GWAS) methods were employed to
identify genetic loci significantly associated with gastric cancer risk after adjusting for
age, gender, region of residence, survey year, BMI, daily energy intake, education level,
and income. The statistical significance was used for a more liberal cut-off of Bonferroni
correction (p < 5 × 10−4) since there was a limited number of participants with gastric
cancer. This approach allowed us to identify potentially important SNPs that might have
been missed with a stricter threshold, while still accounting for multiple comparisons. From
415 initially identified variants, gene names were determined using scandb.org (accessed
on 5 December 2021) and further screened using genemania.org. Linkage disequilibrium
(LD) analysis was performed using Haploview 4.2 in the PLINK toolset to identify and
exclude strongly linked SNPs (D′ < 0.4) among the selected 68 SNPs. Finally, 10 potential
genetic variants from the best model and on the same chromosome were selected.

The best model for SNP–SNP interactions influencing gastric cancer risk was deter-
mined using generalized multifactor dimensionality reduction (GMDR) [24], based on
trained balanced accuracy (TRBA), test balance accuracy (TEBA), and cross-validation
consistency (CVC). The significance threshold was set at p < 0.001 to account for multiple
tests. The number of risk alleles for each SNP in the best model was added to obtain the PRS
for each individual. The calculated PRS was classified into tertiles, that is, the population
was divided into three risk levels: low risk, medium risk, and high risk. A higher PRS
value indicates that the individual has more risk alleles in the best gene interaction model
and thus has a higher risk of gastric cancer.
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2.7. Molecular Docking and Molecular Dynamics Simulation (MDS) of Semaphorin-3C (SEMA3C)

The I-TASSER website (https://zhanggroup.org/I-TASSER/ (accessed on 13 January
2023)) was used to predict the Protein Data Bank (PDB) structures of wild-type and mutant
SEMA3C (Semaphorin 3C) proteins. The PDB format of SEMA3C protein and food compo-
nents (n = 20,000) was converted to PDBQT files using AutoDock Tools 1.5.6 (Molecular
Graphics Laboratory, Scripps Research Institute, Jupiter, FL, USA) [25]. The active sites,
active functional pockets of SEMA3C, and mutated sites were found using the ProteinsPlus
website (https://proteins.plus/ (accessed on 30 January 2023)) and included in molecular
docking. Water molecules attached to the protein and food components were removed [25].
After docking was completed, the output binding energy estimates for each docked pose
were analyzed, and those food components with binding energies less than −10.0 kcal/mol
were selected as potential binding partners [26]. Binding affinity is a measure of the strength
of binding between two molecules. It is usually inversely proportional to the binding free
energy, that is, the lower the binding free energy, the higher the binding affinity, making
the interaction between the two molecules more stable [26].

Molecular dynamics simulation (MDS) was used to study the conformational changes
of protein structures after binding to specific food ingredients. After determining the
optimal docking pose, molecular dynamics simulation was used to simulate the dynamic
behavior of the complex after SEMA3C bound to the food ingredient. During the simulation,
the Chemistry at Harvard Macromolecular Mechanics (CHARMM) force field was applied.
In order to make the simulation closer to the real situation and more accurately reflect
the behavior of the protein under physiological conditions, the protein was solvated, that
is, placed in an environment of water molecules (or other solvents). The simulation was
carried out for 10 nanoseconds (ns), and parameters such as the root mean square deviation
(RMSD), root mean square fluctuation (RMSF), and hydrogen bond value were calculated
during the simulation. These parameters are used to evaluate the stability of a protein
conformation, the volatility of an atomic position, and the formation and breaking of
intermolecular hydrogen bonds.

2.8. Statistical Analyses

Statistical analyses were performed using PLINK version 2.0 and SPSS version 24.0
(IBM SPSS Statistics, New York, NY, USA). SNP–SNP interactions were screened using
GMDR, and the significance of SNP–SNP interactions was assessed by the signed-rank
test of TRBA and TEBA. The best SNP–SNP interaction model with a p-value < 0.05 was
selected. Covariates such as age, sex, BMI, region of residence, physical activity education,
income level, smoking, drinking, and energy intake were adjusted or not [20]. Ten-fold
cross-validation is a commonly used method to evaluate model performance, especially
for cases with large sample sizes (n > 1000). This method ensures that every sample in
the dataset has the opportunity to be used as a test set, thereby more comprehensively
evaluating the generalization ability of the model and more accurately evaluating the
reliability of the CVC [27]. Using the best model, as determined by GMDR analysis, the risk
allele of each SNP in the selected best model was counted as 1 [28]. For example, when the
G allele was associated with an increased risk of gastric cancer, the TT, GT, and GG were
assigned scores of 0, 1, and 2. PRSs were calculated by summing the risk allele scores of each
SNP. The best model with 8 SNPs was divided into three categories (0–6, 7–8, and ≥9) by
tertile, that is, into low-, medium-, and high-PRS groups, respectively. Adjusted odds ratios
(ORs) and 95% confidence interval (CI) for gastric cancer risk with PRS were calculated
after adjusting for covariates. The covariates included were age, gender, BMI, region of
residence, physical activity, education, income level, smoking, alcohol consumption, years
with gastric cancer, and energy intake.

Descriptive statistical analyses were performed for categorical variables, such as sex
and lifestyle, which were calculated based on the frequency distribution of the PRS tertiles
(i.e., low-, medium-, and high-PRS groups). For the frequency distribution of categorical
variables, the Chi-squared test was used for analysis. For quantitative variables, the

https://zhanggroup.org/I-TASSER/
https://proteins.plus/


Nutrients 2024, 16, 3263 6 of 20

Kolmogorov–Smirnov test was used to check their normality due to the large sample size,
and was achieved by the proc univariate procedure. For variables that met the normal
distribution, the means and standard errors were calculated according to the PRS tertile
categories or the presence or absence of gastric cancer. To determine whether the differences
were significant, a one-way analysis of variance (ANOVA) with covariance adjustment was
used, and multiple comparisons between groups were performed using the Tukey test.
In addition, to account for the interaction between PRSs and dietary intake parameters,
participants were divided into high-intake and low-intake groups. After adjusting for
covariates, two-way ANOVA with main effects and interaction terms was used to explore
the interaction between PRSs and lifestyle parameters. Throughout the statistical analysis,
a p-value of <0.05 was used as the criterion for statistical significance. This means that only
when the observed differences reach or exceed this statistical significance level are they
considered to be real and not due to random errors or sampling variations. Such statistical
analysis methods help ensure the accuracy and reliability of research results.

3. Results
3.1. Comparison of the General Characteristics of the Participants

Table 1 describes the demographic and clinical characteristics of the participants,
including 312 participants with gastric cancer and 47,994 without cancer. The average age
of the GC group was 58 years, significantly higher than that of the N-GC group. The risk of
gastric cancer in men was 3.37 times higher than in women (p < 0.001). The BMI (p < 0.001),
plasma concentrations of total cholesterol and triglycerides (p < 0.01), and WBC counts
(p < 0.05) were significantly lower in the GC group than in the N-GC group. The amounts
of participants with high income (>$4000) and education levels (high school or > College)
were also lower in the GC group than in the N-GC group (Table 1).

Table 1. Socio-economic and metabolic characteristics of the participants according to gastric cancer.

Non-Gastric
Cancer

(n = 47,994)

Gastric
Cancer

(n = 312)

Adjusted OR
(95% CI)

Age (years) 1 53.48 ± 8.04 58.12 ± 7.85 *** 1.455 (0.987~2.145)
Genders (men: N, %) 16,808 (35.0) 168 (53.8) *** 3.369 (2.173~5.225)

Initial menstruation age 2 15.10 ± 1.76 15.40 ± 1.83 * 1.606 (0.771~3.345)
Menopause age 3 49.30 ± 4.81 49.50 ± 4.29 0.902 (0.518~1.571)

Pregnancy experience (Yes, %) 4 30,076 (96.6) 137 (95.8) 0.543 (0.162~1.822)
Hormone replacement therapy (Yes, %) 4963 (26.4) 28 (26.2) 0.620 (0.324~1.188)

Oral contraceptive (Yes, %) 4816 (15.5) 22 (15.4) 1.277 (0.649~2.509)
Breastfeeding (Yes, %) 25,453 (85.8) 122 (89.1) 1.234 (0.575~2.651)
Ovariectomy (Yes, %) 664 (7.5) 5 (10.4) 1.217 (0.312~4.743)
Hysterectomy (Yes, %) 3434 (11.1) 19 (13.3) 1.012 (0.519~1.976)

Body mass index (BMI, kg/m2) 5 24.00 ± 2.88 22.40 ± 3.12 *** 0.353 (0.222~0.563)
Waist circumference (cm) 6 80.90 ± 8.65 78.00 ± 9.04 *** 1.422 (0.636~3.179)

Plasma total cholesterol (mg/dL) 7 197.6 ± 35.7 186.3 ± 36.3 *** 0.492 (0.277~0.874)
Plasma triglyceride (mg/dL) 8 119.4 ± 64.9 99.6 ± 52.3 *** 0.606 (0.380~0.968)

Hypertension (N, %) 9 13,709 (28.6) 70 (22.4) * 0.757 (0.497~1.152)
Type 2 diabetes (N, %) 10 4256 (9.1) 28 (9.2) 0.755 (0.431~1.324)

White blood cell counts (109/L) 11 5.73 ± 1.55 5.37 ± 1.40 *** 0.426 (0.237~0.765)
Plasma hs-CRP (mg/dL) 12 0.14 ± 0.36 0.15 ± 0.47 2.080 (0.937~4.615)
Education (Number, %) 13

<High school 14,110 (29.7) 122 (39.2) *
High school 20,658 (43.4) 110 (35.4) 0.602 (0.388~0.935)

College more 12,778 (26.9) 79 (25.4) 0.480 (0.301~0.764)
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Table 1. Cont.

Non-Gastric
Cancer

(n = 47,994)

Gastric
Cancer

(n = 312)

Adjusted OR
(95% CI)

Income (Number, %) 14

<$2000/month 13,851 (30.5) 125 (42.7) ***
$2000–4000 27,761 (61.1) 156 (53.2) 0.803 (0.547~1.181)

>$4000 3851 (8.5) 12 (4.1) 0.288 (0.097~0.855)

The values represent means ± standard errors or number of the adults aged ≥40 (percentage of each group). The
cutoff points of the reference were as follows: 1 <55 years old for age, 2 <14 years old for initial menstruation age,
3 <50 years old for menopause age, 4 non-pregnancy experience, 5 <25 kg/m2 BMI, 6 <90 cm for men and 85 cm
for women waist circumferences, 7 <230 mg/dL plasma total cholesterol concentrations, 8 <150 mg/dL plasma
triglyceride concentrations, 9 <140 mmHg systolic blood pressure, and <90 mmHg diastolic blood pressure plus
hypertension medication, 10 <126 mL/dL fasting serum glucose plus diabetic drug intake, 11 <4 × 109/L white
blood cell counts, 12 <0.5 mg/dL serum high sensitive-C-reactive protein (hs-CRP) concentrations, 13 high school
graduation, and 14 <$2000/month income. Adjusted odds ratios (ORs) are shown after adjusting for covariates,
including age, gender, body mass index (BMI), residence area, physical activity, education, smoking, years with
gastric cancer, and intake of alcohol and energy by logistic regression models. * Significant differences by the
non-gastric cancer group at p < 0.05, *** p < 0.001.

3.2. Comparison of Nutrient Intakes of the GC and N-GC Groups

Table 2 describes the nutrient intakes of the participants with and without gastric
cancers. There was no difference in the intake of energy, carbohydrates, proteins, fats,
sodium, and fiber between the GC and N-GC groups. The prevalence of previous smoking
was higher in the GC group (p < 0.001), but the alcohol and coffee intake (p < 0.05) were
lower than in the N-GC group. The incidence of gastric cancer may be possibly related
to reduced alcohol and coffee consumption (Table 2). The total phenol intake was not
significantly different between the N-GC and GC groups. However, the DII was lower in
the GC group than in the N-GC group, indicating that the individuals experiencing GC
had a better diet (Table 2).

Table 2. Nutrient intake and dietary patterns of the participants according to gastric cancer presence.

Non-Gastric
Cancer

(n = 47,994)

Gastric
Cancer

(n = 312)

Adjusted OR
(95% CI)

Energy intake 1 (%) 98.70 ± 31.5 91.80 ± 32.6 *** 0.976 (0.683~1.397)
Carbohydrate intake (En%) 2 71.53 ± 7.01 73.24 ± 7.16 *** 0.928 (0.552~1.561)

Protein intake (En%) 3 13.45 ± 2.59 13.17 ± 2.63 1.050 (0.749~1.472)
Fat intake (En%) 4 14.00 ± 5.43 12.63 ± 5.56 *** 0.744 (0.502~1.103)

Na intake (mg/day) 5 2454 ± 1389 2387 ± 1549 0.940 (0.640~1.380)
Fiber intake(g/day) 6 5.71 ± 2.83 5.90 ± 3.27 0.895 (0.198~4.051)
Exercise (Number, %)

No
Yes

21,927 (45.8)
25,932 (54.2)

121 (38.9) *
190 (61.1) 1.136 (0.801~1.612)

Smoking (Number, %)
No

Former smoking
Smoking

34,996 (73.1)
7484 (15.6)
5383 (11.3)

185 (59.7) ***
101 (32.6)
24 (7.7)

2.715 (1.558~4.731)
0.628 (0.282~1.396)

Alcohol intake (Number, %)
Mild drink (0–20 g)

Moderate drink (≥20 g)
45,383 (95.2)

2291 (4.8)
307 (98.4) **

5 (1.6) 0.181 (0.039~0.840)
Coffee intake (Number, %) 7

Low
High

15,427 (32.4)
32,145 (67.6)

136 (43.7) ***
175 (56.3) 0.658 (0.467~0.927)
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Table 2. Cont.

Non-Gastric
Cancer

(n = 47,994)

Gastric
Cancer

(n = 312)

Adjusted OR
(95% CI)

Multivitamin
No
Yes

43,157 (89.9)
4837 (10.1)

281 (90.1)
31 (9.9) 0.775 (0.450~1.333)

Total phenol (g/day) 2.51 ± 0.005 2.52 ± 0.041 1.204 (0.999~1.451)
Dietary inflammatory index −19.9 ± 0.067 −21.5 ± 0.56 ** 0.857 (0.716~1.026)

Fried food (Number, %) 8

Low 45,184 (94.8) 300 (96.5)
High 2481 (5.2) 11 (3.5) 1.647 (0.645~4.210)

The values represent means ± standard errors or number of the adults aged ≥40 (percentage of each group).
Adjusted odds ratios (ORs) are shown after adjusting for covariates, including age, gender, BMI, residence area,
physical activity, education, smoking, years with gastric cancer, and intake of alcohol and energy by logistic
regression models. The cutoff points of the reference were as follows: 1 <estimated energy intake, 2 <65 energy %
carbohydrate intake, 3 <13 energy % protein intake, 4 <20 energy % fat intake, 5 <1600 sodium intake, 6 <14 fiber
intake, 7 <3 g/day coffee drinking, and 8 <1 time/week fried food. En%, energy percent. * Significant differences
by the non-gastric cancer group at p < 0.05, ** at p < 0.01, *** p < 0.001.

3.3. Genetic Variants for Gastric Cancer Risk and the Best Model for Gene-Gene Interactions

The best gene variant–gene variant interaction model associated with gastric cancer
risk was evaluated by the GMDR method. In order to select the best model among the
10 models shown in Table S1, statistical indicators such as the TRBA, TEBA, and CVC were
tested. These indicators help to evaluate the predictive performance and stability of a model.
When selecting the best model among the 10 models, the covariates listed in Table S1 were
adjusted or not. By adjusting these covariates, the association between gene variants and
gastric cancer risk can be more accurately evaluated and the influence of confounding fac-
tors can be reduced. The 10 selected SNPs were as follows: rs7521784 of disabled-1 (DAB1)
on chromosome 1, rs12693006 of pyruvate dehydrogenase kinase-1 (PDK1) on chromosome
2, rs1045653 of dedicator-of-cytokinesis-10 (DOCK10) on chromosome 2, rs9835646 of zinc
finger and BTB domain 20 (ZBTB20) on chromosome 3, rs630760 of Kalirin RhoGEF Kinase
(KALRN) on chromosome 3, rs11946315 of a disintegrin and metalloprotease 29 (ADAM29)
on chromosome4, rs1207808 of membrane-associated guanylate kinase 2 (MAGI2) on
chromosome 7, rs58499534 of cub sushi multiple domains-1 (CSMD1) on chromosome 8,
rs10831776 of molecule interacting with CasL-2 (MICAL2) on chromosome 11, and rs205881
of casein kinase IIA1 (CSNK2A1) on chromosome 20 (Table 3). Each genetic variant was
significantly associated with gastric cancer (OR = 0.61–1.59; p = 1.70 × 10−6 to 0.0008587).
The genotype frequency distribution met the HWE criteria (p > 0.05), and the minor allele
frequency (MAF) value was p > 0.01 (Table 3).

Table 3. The characteristics of the 10 genetic variants of genes in gastric cancer used for the generalized
multifactor dimensionality reduction analysis in adults aged >40.

Chr 1 SNP 2 Position Mi 3 Ma
4 OR 5

6 p Value
Adjusted

7 MAF
8 p Value
for HWE Gene Functional Consequence

1 rs7521784 58175325 A G 1.38 3.99 × 10−4 0.4178 0.7795 DAB1 Upstream of transcript
2 rs12693006 173467213 C T 1.59 1.70 × 10−6 0.2374 0.6649 PDK1 3′ UTR
2 rs1045653 225630435 T C 0.63 1.90 × 10−5 0.3389 0.2458 DOCK10 3′ UTR
3 rs9835646 114148557 A C 0.61 4.44 × 10−5 0.196 0.4959 ZBTB20 Upstream of transcript
3 rs630760 124149174 G A 1.48 2.53 × 10−4 0.1762 0.3554 KALRN Downstream of transcript
4 rs11946315 175870844 C T 0.69 4.59 × 10−4 0.2759 0.2781 ADAM29 Intron
7 rs1207808 78496427 C G 0.66 2.28 × 10−4 0.2762 0.3319 MAGI2 Upstream of transcript
7 rs1527482 80427530 T C 1.93 2.60 × 10−5 0.055 0.2334 SEMA3C Missense
8 rs58499534 3471561 G A 1.58 3.85 × 10−6 0.2156 0.2413 CSMD1 Upstream of transcript

11 rs10831776 12297403 G A 0.68 3.46 × 10−4 0.2622 0.5937 MICAL2 Intron
20 rs205881 486771 T C 1.47 1.03 × 10−4 0.2407 0.4981 CSNK2A1 Intron

1 Chromosome; 2 single-nucleotide polymorphism; 3 minor allele; 4 major allele; 5 odds ratio; 6 p-value for OR
after adjusting for age, gender, body mass index, residence area, physical activity, education, smoking, and intake
of alcohol and energy; 7 minor allele frequency; 8 Hardy–Weinberg equilibrium.
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This study listed multiple models in Table S1 and found that the eight-SNP model had
the lowest p-value among all models. This suggested that the eight-SNP model was the best
in revealing the association between SNP–SNP interaction and gastric cancer risk. In addition,
the cross-validation consistency (CVC) value of the model was 10/10, which further confirmed
the stability and reliability of the model. The CVC value reflects the prediction consistency of
the model on different data subsets, and a high CVC value indicates that the model can main-
tain stable prediction performance under different conditions. As a result, this model, which
included eight SNPs, including DAB1_rs7521784, PDK1_rs12693006, DOCK10_rs1045653,
MAGI2_rs1207808, CSMD1_rs58499534, MICAL2_rs10831776, CSNK2A1_rs205881, and
ADAM29_rs11946315, was selected as the best model (Table S1). The TRBA, TEBA, and
CVC values of this eight-SNP model were 0.8474, 0.5377, and 10/10, respectively, after ad-
justing for age, gender, BMI, residence area, physical activity, education, income, smoking,
and alcohol and energy intake.

3.4. PRSs Obtained by the Summation of Risk Alleles in the Best Model for Gastric Cancer Risk

A model containing eight SNPs was used to evaluate the association between polygenic
risk scores (PRSs) and gastric cancer risk. The high-PRS group and the low-PRS group were
compared, and the adjusted odds ratios (ORs) and their 95% confidence intervals (CIs) were
calculated. After adjusting for the first set of covariates (covariate set 1), the adjusted OR for
gastric cancer in the high-PRS group was 4.04 (95% CI: 2.68–6.11) (Table S2). This indicated
that, after adjusting for other potential influencing factors, the risk of gastric cancer in the
high-PRS group was more than four times that in the low-PRS group, and this association
was statistically significant. In addition, the above analysis was repeated after adjusting
for the second set of covariates (covariate set 2). The results showed that the adjusted OR
for gastric cancer in the high-PRS group was 4.12 (95% CI: 2.71–6.27) (Table S2), which
was similar to the results after adjustment for the first set of covariates. This shows that,
regardless of which set of covariates was adjusted, the risk of gastric cancer in the high-
PRS group was significantly higher than that in the low-PRS group. The stability of this
association was further verified. Such results are of great significance for understanding the
role of genetic mutation in the occurrence of gastric cancer. They help develop personalized
risk assessment and intervention strategies based on genetic information. At the same time,
they also emphasize the importance of considering multiple covariates when conducting
genetic epidemiological studies to ensure the accuracy and reliability of the research results.
These results indicated that subjects in the high-PRS group, adjusting for covariate sets 1
and 2, were at a 4.04- and 4.12-fold higher risk of gastric cancer, respectively, than subjects in
the low-PRS group (p < 0.001). However, in covariate sets 1 and 2, no significant correlation
was found between the PRS and serum total cholesterol, TG, LDL, CRP, and HDL, as well
as waist circumference, hypertension, and type 2 diabetes risk (p > 0.05), indicating that
PRSs may only be significantly associated with gastric cancer, while metabolic markers
such as cholesterol and triglycerides are affected by multiple factors such as genetics, diet,
and lifestyle, and the complexity and diversity of these factors may make it difficult to
simply summarize the relationship between metabolic markers and gastric cancer risk.
Therefore, abnormalities in metabolic markers such as serum cholesterol and triglyceride
concentrations might not be directly associated with gastric cancer risk, or this association
might be masked by other stronger influencing factors.

3.5. Interaction between the PRSs and Biochemical Parameters Influencing Gastric Cancer Risk

This study investigated the relationship between WBC count and gastric cancer risk.
The risk of gastric cancer under different PRS group and WBC count combinations was
analyzed. In the high-PRS group, individuals with higher WBC counts had a lower risk
of gastric cancer than those with lower WBC counts (as shown in Table 4, Figure 2A, and
Supplementary Figure S1A). This finding suggests that, even in people with a higher genetic
risk, elevated WBC counts may have a certain protective effect on gastric cancer risk. In
addition, we paid special attention to the risk of gastric cancer under the combination of a
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high-PRS group and a low WBC count. This study found that individuals in the high-PRS
group with lower WBC counts had a 5.13-fold-increased risk of gastric cancer compared
with individuals in the low-PRS group with lower WBC counts (p = 0.014; as shown in
Table 4). This finding emphasizes that reduced WBC counts may be an important risk
factor for gastric cancer in individuals with a high genetic risk. These results suggest that
the WBC count may be a biomarker associated with gastric cancer risk, especially when
combined with genetic information.
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Figure 2. Incidence of gastric cancer according to the parameters to interact with polygenic risk scores
(PRS). (A) Gastric cancer incidence according to their white blood cell counts (WBC, cutoff value:
4 × 109/L). (B) Gastric cancer incidence according to their smoking status. (C) Gastric cancer
incidence according to their coffee intake (cutoff value: 3 g/day). PRS interacted with white blood
cell (WBC) counts, smoking status, and coffee intake. The participants with high-PRS were higher in
the low WBC group than in the high WBC group, in the non- and former smokers than in the smokers,
and in the low coffee intake (<3 cup times/week) than in the high coffee intake. p value indicated the
interaction between PRS with designated parameters. a,b,c Different alphabets indicated significant
difference among the groups at p < 0.05.
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Table 4. Adjusted odds ratios (ORs) for the risk of gastric cancer by polygenetic risk scores (PRSs) of
the best model after covariate adjustments according to low- and high-lifestyle factors.

Low-PRS
(n = 10,166)

Medium-PRS
(n = 20,168)

High-PRS
(n = 17,972)

Gene-Nutrient
Interaction

p Value

Low WBC 1

High WBC
1 2.355(0.604~9.181)

1.780(1.020~3.105)
5.126(1.415~18.567)
3.506(2.063~5.959) 0.014

Low energy 2

High energy
1 1.661(1.000~2.760)

2.709(1.044~7.033)
3.400(2.104~5.493)

7.355(2.956~18.302) 0.244

Low CHO 3

High CHO
1 2.004(0.421~9.529)

1.837(1.154~2.923)
7.552(1.769~32.236)
3.817(2.456~5.931) 0.298

Low protein 4

High protein
1 1.790(0.962~3.329)

1.909(1.007~3.622)
4.200(2.340~7.538)
4.097(2.231~7.525) 0.945

Low fat 5

High fat
1 1.830(1.083~3.091)

1.929(0.830~4.484)
4.294(2.617~7.044)
3.829(1.716~8.543) 0.400

No exercise
Exercise 1 1.453(0.748~2.822)

2.212(1.207~4.054)
3.195(1.718~5.939)
4.985(2.799~8.878) 0.795

Non-smoke
Smoke + former 1 2.208(1.232~3.957)

1.376(0.685~2.763)
4.295(2.453~7.521)
3.825(2.019~7.249) p < 0.0001

Low Coffee 6

High Coffee
1 2.299(1.065~4.964)

1.669(0.964~2.889)
6.301(3.039~13.07)
3.129(1.858~5.267) 0.04

Values represent odds ratios and 95% confidence intervals of the adults aged ≥40. PRSs with eight SNPs were
divided into three categories (1–6, 7–8, and ≥9) by tertiles as the low, medium, and high groups of the best
model of GMDR. The cutoff point was as follows: 1 <4 × 109/L white blood cell (WBC) counts, 2 <estimated
energy intake, 3 <65% carbohydrate (CHO) intake, 4 <13% protein intake, 5 <20% fat intake, and 6 <3 g/day coffee
drinking. Values represent adjusted odds ratios and 95% confidence intervals. Covariates included age, gender,
BMI, residence area, physical activity, education, smoking, years with gastric cancer, and intake of alcohol and
energy. The reference was the low-PRS group.

3.6. Interaction between PRSs and Lifestyle Factors Influencing Gastric Cancer Risk

The smoking and coffee intake interacted with the PRS to affect gastric cancer risk
(p < 0.0001 and 0.04, respectively). The incidence of gastric cancer was higher in participants
who smoked than in those who did not, regardless of the PRS (Figure 2B and Supplementary
Figure S1B). Smokers in the high-PRS group had a higher incidence of gastric cancer than
non-smokers (Table 4, Figure 2B and Supplementary Figure S1B). The smokers and non-
smokers in the high-PRS group had a 3.83- and 4.29-fold higher risk of gastric cancer than
those in the low-PRS group (p < 0.0001; Table 4). The gastric cancer incidence was higher in
the high-PRS group than in the low-PRS group in participants with both a low and high
coffee intake. However, the gastric cancer incidence was much higher in the participants
with a high PRS and a low coffee intake (Figure 2C and Supplementary Figure S1C). The
PRS was positively associated with 6.30 and 3.13 times higher risk of gastric cancer in the
low and high coffee intake groups (Table 4). Those in the high-PRS group with a high
coffee intake had a lower risk of gastric cancer than those with a low coffee intake (Table 4,
Figure 2C, and Supplementary Figure S1C). Those in the high-PRS group with a low coffee
intake had a 6.30-fold higher risk of gastric cancer than those in the low-PRS group with a
low coffee intake (p = 0.04; Table 4). However, the rate of gastric cancer was higher in the
low-coffee intake group than in the high-coffee intake group, regardless of the PRS.

3.7. Binding Free Energy of Food Components to Wild and Mutated Types of SEMA3C_rs1527482

The wild and mutated types of SEMA3C_rs1527482 had various levels of binding free
energy for 20000 food components. Tables 5 and S3 present the food components which
have a low binding free energy with the wild and mutated types of SEMA3C_rs1527482.
Some food components, including theaflavate, rugosin E, vitisifuran B, plantacyanin, and
(cyanidin 3-O-beta-glucoside) (kaempferol 3-O-(2-O-beta-glucosyl-beta-glucoside)-7-O-
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beta-glucosiduronic acid) malonate (CK-malonate), lowered the binding energy in both
wild and mutated types. Some coffee components and metabolites also contribute to a
reduction in binding free energy (Table S3). However, pinotin A, delta-viniferin, sanguiin
H6, and quercetin 3-O-rhamnosyl-(1->2)-rhamnosyl-(1->6)-glucoside decreased the binding
energy with the wild type of SEMA3C_rs1527482. Withanolide B, epitheaflagallin 3-O-
gallate, pomolic acid, and epigallocatechin had lower binding energies to the mutated types.
SEMA3C_rs1527482 was positively associated with gastric cancer risk. Food components
with low binding free energy may modulate and lower SEMA3C activity.

Table 5. Binding energy between the wild (WT, Val337) and mutated type (MT, 337Met) SEMA3C_rs1527482
and food components.

Both of WT and MT

Natural compounds Binding energy (kcal/mol) Foods containing the selected natural
compound

Trisjuglone −11.1 Juglans regia (walnut) roots.
Rugosin E −11.8 Cloves

Theaflavate B −11.3 Black tea (Camellia sinensis).
Theaflavate A −11.4 Black tea (Camellia sinensis).

Theaflavin 3′-gallate −11.3 Black tea and commercial oolong tea
Lettowianthine −11.7 Annona glabra (pond apple).

Vitisifuran B −11.8 wine grape, Vitis vinifera ‘Kyohou’
Tragopogonsaponin J −11.3 Tragopogon porrifolius (salsify), green vegetables

Mongolicain A −11.1 Guava
Plantacyanin −12.5 Cucumber, green vegetables.

WT only

Natural compounds Binding energy (kcal/mol) Foods containing the selected natural
compound

Pinotin A −10.3 Red wine, including Pinotage (CCD)
Quercetin 3-O-rhamnosyl-(1->2)-

rhamnosyl-(1->6)-glucoside −10.2 Common sage, common thyme, Italian
oregano, and rosemary

delta-Viniferin −10.1 Stressed grapevine (Vitis vinifera) leaves
Murrayenol −10.4 Roots of Murraya koenigii (curry leaf tree).

Sanguiin H6 −10.1 Sanguisorba officinalis (burnet bloodwort),
blackberry, and red raspberry.

Isovitexin 6′′-rhamnoside −10.0 Grape and mung bean.
C-K malonate −10.5 Chives

MT only

Natural compounds Binding energy (kcal/mol) Foods containing the selected natural
compound

Withanolide B −10.6 Leaves of Lycium chinense (Chinese boxthorn)
Epitheaflagallin 3-O-gallate −10.6 Black tea.

Pomolic acid −10.8 Apple peel, rosemary, lemon balm, pomes, and
spearmint.

19-Dehydroursolic acid −10.6 Sanguisorba officinalis (burnet bloodwort).
Ganosporelactone B −10.9 Spores of Ganoderma lucidum (reishi).

alpha-Amyrone −10.9 Sambucus nigra (elderberry)
3,3′-Bisanigorufone −11.5 Rhizomes of Musa acuminata (dwarf banana)
Epigallocatechin-(4

beta->6)-epicatechin 3,3′-digallate −11.4 Oolong tea, Camellia sinensis

Artomunoxanthentrione epoxide −10.8 Root bark of Artocarpus communis (breadfruit).
Khelmarin D −10.7 Citrus paradisi and Citrus tangerina (Rutaceae).

Food components to lower binding energy with WT and MT SEMA3C rs1527482 and foods containing the
selected food component. C-K malonate: (cyanidin 3-O-beta-glucoside) (kaempferol 3-O-(2-O-beta-glucosyl-beta-
glucoside)-7-O-beta-glucosiduronic acid) malonate.
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Through calculation and simulation, the binding free energy between the wild-type
SEMA3C protein and the CK-malonate molecule, as well as the changes in this binding in the
mutant SEMA3C protein, were analyzed. Figure 3A shows the binding free energy between
the wild-type SEMA3C protein and CK-malonate through hydrogen bonding, where the
pink and green parts represent the donor and acceptor of the hydrogen bond, respectively.
Figure 3B provides a two-dimensional image that more intuitively shows their binding
positions and intermolecular forces. The binding of CK-malonate to the mutant SEMA3C
protein was further analyzed, as shown in Figure 3C,D. The binding energy of CK-malonate
to the wild-type SEMA3C protein was −10.5 kcal/mol, while that to the mutant SEMA3C
protein was −8.5 kcal/mol. This suggested that the mutation might affect the binding
stability between the SEMA3C protein and CK-malonate. In order to more comprehensively
evaluate the stability of this binding, the root mean square deviation (RMSD) and root mean
square fluctuation (RMSF) of the SEMA3C protein (whether wild or mutant type) when
bound to another molecule, CK-malonate, were also calculated. As shown in Figure 4A,B,
the RMSD of wild-type SEMA3C protein bound to CK-malonate remained close to 3 Å
throughout the simulation, indicating that their binding was relatively stable. Similarly, the
RMSF of wild-type SEMA3C protein bound to CK-malonate also mostly remained below
3 nm, except for one exception at residue 580 in the RMSF map. These results further
support the view that CK-malonate can stably bind to wild-type SEMA3C protein.
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Figure 3. Molecular docking of C-K malonate on SEMA3C_rs1527482 wild (WT) and mutated types
(MT). (A) Molecular docking of (cyanidin 3-O-beta-glucoside)(kaempferol 3-O-(2-O-beta-glucosyl-
beta-glucoside)-7-O-beta-glucosiduronic acid) malonate (C-K malonate) on SEMA3C_rs1527482 WT.
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(B) The interaction force between C-K malonate and SEMA3C_rs1527482 WT. (C) Molecular docking
of C-K malonate on SEMA3C_rs1527482 MT. (D) The interaction force between C-K malonate and
SEMA3C_rs1527482 MT.
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(WT) and mutated types (MT). (A) The root-mean-square deviation (RMSD) of (cyanidin 3-O-beta-
glucoside)(kaempferol 3-O-(2-O-beta-glucosyl-beta-glucoside)-7-O-beta-glucosiduronic acid) mal-
onate (C-K malonate) on WT and MT of SEMA3C_rs1527482. (B) The root-mean-square fluctuation
(RMSF) of C-K malonate on WT and MT of SEMA3C_rs1527482.

4. Discussion

In this study, we explored the effects of genetic variants on gastric cancer risk. Through a
comprehensive analysis combining GWAS and GMDR, we identified 10 genetic variants sig-
nificantly correlated with gastric cancer. Further analysis revealed an optimal SNP–SNP inter-
action model comprising eight SNPs: DAB1_rs7521784, PDK1_rs12693006, DOCK10_rs1045653,
MAGI2_rs1207808, CSMD1_rs58499534, MICAL2_rs10831776, CSNK2A1_rs205881, and
ADAM29_rs11946315. The SNPs demonstrated the complex genetic landscape underlying
gastric cancer susceptibility. The PRSs derived from these eight SNPs demonstrated interac-
tions between WBC count, smoking status, and coffee consumption. These findings provide
novel insights into the complex interplay between genetic and environmental factors in gastric
cancer risk. Our in silico analysis focused on SEMA3C_rs1527482, a missense mutation. We



Nutrients 2024, 16, 3263 15 of 20

observed that specific polyphenols altered the binding affinity of this variant, suggesting its
potential as a therapeutic target for gastric cancer. This discovery opens new avenues for
personalized nutritional interventions in gastric cancer prevention and treatment.

The association of DAB1_rs7521784 with gastric cancer risk is a novel finding in
our study. Previous research has identified DAB1 mutations in Chinese patients with
chronic gastritis and peritoneal metastasis of gastric cancer [29], and reduced DAB1 mRNA
expression has been observed in various cancers [30]. Similarly, our findings regarding
PDK1_rs12693006 align with the known roles of PDK1 in cancer-related processes and its
association with poor gastric cancer prognosis, suggesting this variant’s involvement in
tumor activity.

The inclusion of DOCK10_rs1045653 in our model is particularly interesting. DOCK
proteins are known to be involved in various pathologies, including cancer, by regulating
the actin cytoskeleton, cell adhesion, and migration [31]. DOCK10, specifically, has been
shown to play roles in immune function and neuroinflammation [32]. Our study is the
first to associate this genetic variant with gastric cancer risk, potentially highlighting new
pathways in gastric cancer development. While the hypermethylation of MAGI2 has been
linked to gastric cancer tumorigenesis [33], our study is the first to identify an SNP in
this gene associated with gastric cancer risk. This finding may provide new avenues for
understanding the genetic basis of gastric cancer development.

The involvement of CUB and Sushi Multiple Domains 1(CSMD1)_rs58499534 in our
model aligns with previous research showing the crucial roles of CSMD1 in cancer-related
processes [34]. Our study extends these findings to include a specific genetic variant
associated with gastric cancer risk. Similarly, our identification of microtubule-associated
monooxygenase, calponin, and LIM domain containing 2 (MICAL2)_rs10831776 as risk
factors is consistent with previous research showing elevated MICAL2 mRNA expression in
gastric cancer tissues [35,36]. CSNK2, or casein kinase 2 (CK2), is involved in various cellular
processes and has been implicated in tumor development, with CSNK2A1 overexpression
shown to promote gastric cancer progression [37]. ADAM29 has been demonstrated to
promote gastric cancer cell proliferation, migration, and invasion, with increased expression
associated with poor patient survival [38]. These findings contribute to our understanding
of the polygenic nature of gastric cancer risk. While each genetic variant may have a minor
individual effect, their combination can significantly increase the associated risk [39].

The WBC count is a systemic inflammatory biomarker associated with an increased
risk of several chronic diseases. Chronic inflammation is also known to play a role in
cancer pathogenesis. A Japanese study reported that a high WBC count was a risk factor
for gastric cancer in H. pylori-infected subjects. However, no association was observed in
the H. pylori-negative group [40]. In this study, the incidence of gastric cancer was higher
in participants with a low WBC count, and the low count of WBCs interacted with the
PRS to increase the risk of gastric cancer. In the low WBC count group, individuals with a
high PRS had a 5.13-fold higher risk of gastric cancer than those with a low PRS in subjects
whose H. pylori infection status was unknown.

The International Agency for Research on Cancer (IARC) classified smoking as a
carcinogen in 2004, confirming its role as a significant risk factor for gastric cancer [41]. The
carcinogenic process is believed to involve gastric atrophy induced by substances such
as nitrosamines and other nitroso compounds present in tobacco smoke [42]. Our study
builds upon this knowledge by demonstrating an interaction between smoking status and
the PRS in influencing gastric cancer risk. Notably, individuals with a high PRS who were
former or current smokers exhibited a 3.83-fold-increased risk of gastric cancer compared
to those with a low PRS.

Coffee’s relationship with gastric cancer is more complex and controversial. As an
intricate mixture of compounds, coffee contains both potential carcinogens and anti-cancer
agents. Antioxidants like phenolic compounds, diterpenes, melanoidins, and vitamin
precursors may offer protective effects, while trace amounts of aromatic hydrocarbons
and heterocyclic amines formed during processing could potentially promote carcinogene-
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sis [43]. Some studies have reported a modest 7% reduction in gastric cancer risk associated
with coffee consumption [44], while others have found no significant association [43]. It
is important to note that the observed lower coffee consumption in the gastric cancer
group may be partially attributed to dietary changes following diagnosis, rather than
being solely a contributing factor to cancer development. This potential reverse causality
highlights the need for prospective studies to further elucidate the relationship between
coffee consumption and gastric cancer risk.

SEMA3C, a secreted glycoprotein of the semaphorin class 3 family, has been implicated
in gastric cancer progression [45]. This protein promotes cancer growth and treatment
resistance by activating signaling cascades involving the epidermal growth factor receptor
(EGFR), erythroblastic oncogene B2 (ErbB2), and mesenchymal-epithelial transition (MET).
These pathways are independently transactivated via plexin B1 by cognate ligands [46].
Elevated expression and activity of SEMA3C have been associated with increased cancer
cell invasion and adhesion [45]. Additionally, plexin B1 plays a role in modulating immune
responses, which may influence cancer development. Our findings align with previous
research, demonstrating that the SEMA3C_rs1527482 variant is positively associated with
gastric cancer risk. Specifically, the minor allele of this SNP appears to confer increased
susceptibility to gastric cancer. As a missense mutation, the activity of this genetic variant
may be modulated by interactions with dietary components.

Molecular docking studies revealed potential interactions between small molecule
food compounds and SEMA3C_rs1527482 (wild type and mutant), providing a quantitative
metric (binding energy) for evaluating compound–protein interactions. A low binding
energy means stronger interactions, which may improve or regulate protein function. Al-
though metabolism may affect the compounds’ structure, the docking results still provide a
key starting point for understanding how dietary components could have different effects
based on individual genetic variations. Despite its limitations, molecular docking lays the
foundation for exploring genotype-specific nutritional interventions and their impacts on
health. Therefore, molecular docking research is of great significance in accelerating the de-
velopment of new drugs, guiding the optimization of drug molecular structures, revealing
the interaction between drugs and targets, and predicting drug metabolic pathways. It is
an indispensable technology in the field of modern drug development.

An in silico analysis revealed that certain food components bind to the SEMA3C
protein with binding energies below −10 kcal/mol, suggesting the potential modulation of
SEMA3C activity. Interestingly, the binding affinities differed between the wild-type and
mutated forms of the protein. For both variants, tea components exhibited strong binding.
However, the wild-type protein showed preferential binding to components from grapes
and wine, while the mutated form demonstrated stronger interactions with compounds
from tea and fruit peels. These findings suggest that specific dietary elements, particularly
those found in tea, grapes, and fruit peels, might differentially suppress SEMA3C activity
in individuals carrying the wild-type or mutated rs1527482 allele. This potential gene–diet
interaction could implicate personalized nutrition strategies in gastric cancer prevention.
However, it is crucial to note that these computational predictions require validation
through rigorous experimental studies.

The strengths of this study are as follows: (1) This study utilized a large sample size,
ensuring strong statistical power and improving the generalizability of our findings to
Korean adults. (2) We employed multiple aspects of genetic analysis, polygenic risk scores,
and lifestyle to provide a more nuanced understanding of gastric cancer risk factors, thereby
improving the validity and relevance of our results. (3) The interactions observed between
specific food components and genetic variants provided potential practical applications.
These results might help develop personalized gastric cancer prevention and management
strategies. The limitations of this study are as follows: (1) The cross-sectional nature of this
study limited our ability to establish temporal relationships between variables. Therefore,
we could not directly infer causal relationships or track changes in disease status over
time. (2) Our study population was recruited from urban hospitals, and because the study
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samples were mainly from urban hospitals, the results might not be applicable to a wider
population in rural or remote areas. In addition, participants might have been more or less
inclined to participate in the study due to factors such as health status, knowledge level,
or socioeconomic status, which could also introduce selection bias. (3) The reliability of
the self-reported data was often affected by environmental factors such as the memory,
understanding, and honesty of the participants. In this study, gastric cancer diagnosis was
self-reported and not independently verified, which might lead to inaccurate or biased
information. In addition, we did not distinguish between gastric cancer subtypes because
they might have different risk factors depending on the location of the tumor. (4) Patients’
lifestyles and nutrient intake were self-reported based on individual estimates of their
usual intake [21]. The food intake measured by SQFFQ might not fully capture long-term
dietary habits, and the collection process might be subject to bias, similar to other self-
report methods. (5) H. pylori infection has been widely recognized as an important risk
factor for gastric cancer. Failure to adjust for the confounding factor of H. pylori infection
might exaggerate or underestimate the associations between other risk factors and gastric
cancer. Such bias might affect the reliability and accuracy of the study results. Despite these
limitations, our study provided valuable insights into the complex interactions between
genetic and environmental factors in gastric cancer risk, laying the foundation for future
research and potential prevention strategies.

5. Conclusions

Our study identifies a novel eight-SNP PRS model that significantly elevates the
gastric cancer risk by 4.12-fold and highlights the potential role of SEMA3C_rs1527482 in
gastric cancer susceptibility. We found evidence suggesting that specific components in tea,
grapes, and fruit peels might differentially affect wild-type and mutated SEMA3C protein
activity. Important interactions between white blood cell counts, PRSs, coffee consumption,
and smoking status were revealed, amplifying the genetic susceptibility to gastric cancer
and underscoring the complex interplay between genetic and environmental factors in
cancer development. While these findings contribute significantly to our understanding of
gastric cancer risk, it is important to acknowledge the limitations of our study, including
its cross-sectional nature, reliance on self-reported food intakes and lifestyles, and lack of
differentiation between gastric cancer subtypes.

Based on our results, we propose that customized nutritional plans to potentially
reduce gastric cancer risk could include increasing coffee and polyphenol-rich food con-
sumption, especially for individuals with a high PRS. Theaflavate, rugosin E, vitisifuran
B, and plantacyanin could be recommended regardless of SEMA3C_rs1527482 variant
status. Additionally, immune-boosting foods and smoking cessation strategies could be
emphasized for participants with high PRSs. However, these dietary recommendations
are preliminary and require further clinical validation. Future research should focus on
validating these findings in larger, more diverse populations, conducting long-term clin-
ical trials to assess the efficacy of targeted dietary interventions, and integrating other
relevant genetic markers and environmental factors to develop more comprehensive and
personalized prevention strategies for gastric cancer.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu16193263/s1, Table S1: Generalized multifactor dimensionality
reduction (GMDR) results of multi-locus interaction with genes in gastric cancer risk. Table S2: Odds
ratios for gastric cancer risk-adjusted for alleles of GMDR after adjustment for covariates. Table S3:
Biding energy between the wild (WT, Val337) and mutated type (MT, 337Met) of SEMA3C based
on rs1527482 and coffee components and its metabolites. Figure S1: Interaction between PRSs and
lifestyle factors influencing gastric cancer incidence.
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