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Abstract 

Background Diatomite is a source of biologically available silicon but in feed industry its insecticide and anti-caking 
properties have been also widely recognized. The aim of the study was to evaluate the effect of dietary diatomite-
bentonite mixture (DBM) supplementation on the quantitative and qualitative composition of the bacterial microbi-
ome of the broiler chicken gut. The trial was carried out on 960 Ross 308 broiler chickens divided into 2 experimental 
groups throughout the entire rearing period lasting 6 weeks. The birds were fed complete granulated diets with-
out (group C) or with DBM (group E) in an amount of 1% from the 11 day of life. Two nutritionally balanced diets were 
used, tailored to the age of the broilers: a grower diet (from day 11 to 34) and a finisher diet (from day 35 to 42 of life).

Results Diatomite used in a mixture with bentonite significantly altered the microbiome. Restricting the description 
to species that comprise a minimum of 1% of all analyzed sequences, 36 species in group E (with diatomite) and 30 
species in group C (without diatomite) were selected. Several bacteria species were identified in intestinal contents 
of chickens for the first time. Thirteen species occurred only in group E: Agathobaculum butyriciproducens, Anaerobu-
tyricum hallii, Anaerobutyricum soehngenii, Blautia producta ATCC 27,340 = DSM 2950, Gordonibacter pamelaeae 7-10-1-
b, Helicobacter pullorum NCTC 12,824, Lactobacillus crispatus, L. helveticus DSM 20,075 = CGMCC 1.1877, Mucispirillum 
schaedleri, Phascolarctobacterium faecium, Phocaeicola coprocola DSM 17,136, P. massiliensis, and Ruthenibacterium 
lactatiformans.

Conclusions The findings highlight the intricate and potentially consequential relationship between diet, specifically 
diatomite-bentonite mixture supplementation, and gut microbiota composition.
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Background
The gut microbiota of poultry has been the subject of 
intensive research over the past 20 years [4, 7, 12, 14, 
21, 37, 46, 55, 60, 65, 68, 92, 114]. The continuous devel-
opment of the broiler chicken industry and its growing 
importance in ensuring the production of healthy food 
have stimulated the use of new techniques in this area. 
Thanks to high-throughput sequencing technologies, 
aimed at identifying new species and determining their 
metabolic capacity and function in the host organism, 
understanding the mechanism of protective activity, and 
describing the horizontal transmission to hosts of other 
taxonomic classes became available like never before. In 
this context, it is noteworthy that sequences originally 
determined in the gut contents of chickens are often 
found in samples taken from the intestinal system of 
humans, other animals, plants, soils, and water reservoirs 
(Global distribution of the 16 S sequence, https:// bacdi ve. 
dsmz. de). Therefore, it is not possible to separate knowl-
edge related to animals from that related to human health 
when exploring this topic, especially since raw materials 
from animals ultimately serve as food for humans. Fur-
thermore, the taxonomic classification of these microor-
ganisms is continually evolving. For example, the phyla 
previously known as Proteobacteria, Firmicutes, Act-
inobacteria, and Bacteroidetes have experienced recent 
changes in their nomenclature, with Proteobacteria now 
sometimes referred to as Pseudomonadota, Firmicutes as 
Bacillota, Actinobacteria as Actinomycetota, and Bacte-
roidetes as Bacteroidota. Older publications may still use 
the previous names.

The composition and diversity of the gut microbiota is 
influenced by many factors, including host genetics [41, 
81], long-term diet [14, 19, 39, 58, 81], medication [77, 
91], age of the host [65] and several external factors such 
as ecological conditions of the host environment and 
laboratory culture of samples [1, 7, 46, 80]. The impact of 
common parasitic diseases (mainly coccidiosis caused by 
Eimeria sp.) is also worth mentioning [57].

Among many environmental factors, nutrition has the 
greatest influence on the composition of microorganisms 
that inhabit the digestive tract of chickens and the qual-
ity of their products. In this regard, the use of different 
feed additives, including minerals such as clays [63] or 
diatomaceous earth [10] became more and more com-
mon. The role of these substances is not only to provide 
minerals, but also to bind microbiological or toxicologi-
cal agents from contaminated feed, which can affect the 
health, productivity and safety of livestock animals. Dia-
tomaceous earth (diatomite DT) is a naturally occurring 
sedimentary rock which consists of fossilized diatoms 
[10] and is made up of almost amorphous silicon diox-
ide (80–90%), with minor contains of alumina (2–4%) 

and iron oxide (0,5–2%). Diatomite contains a wide 
range of naturally occurring minerals such as calcium, 
magnesium, iron, phosphate, sodium, titanium, potas-
sium and organic amorphous silica [106], has the proper-
ties of a mycotoxin absorbing agent [43], can inactivate 
some bacteria like Staphylococcus aureus and Escheri-
chia coli  [17] and prevent the development of ascites in 
broiler chickens [42]. In feed industry its insecticide and 
anti-caking proprieties have been widely recognized. 
Diatomite is also a source of biologically available silicon 
and has many other positive physiological properties. 
However, chemical pollution of this material, especially 
with heavy metals, may limit its nutritional suitability. 
The earlier work has shown that the mobility and toxic-
ity of heavy metals from DT may be reduced through the 
use of bentonite especially if a mixture of diatomite and 
bentonite in a ratio of 75:25% (wt/wt) [36]. Considering 
the potential of using such a mixture in practical poultry 
feeding, we decided to evaluate its impact on changes in 
gut microbiome, which may, in turn, alter the health and 
performance of broiler chickens.

Most of the microbiome in chickens caecum is rep-
resented by Gram-positive (77%) and Gram-negative 
rods (14%) as well as Gram-positive cocci (9%) [20]. 
The predominant bacterial phyla are Proteobacteria 
(2–9%), Firmicutes (50–70%), Actinobacteria (1–3.5%) 
and Bacteroidetes (approximately 12–40% of the general 
microbiome) [4, 20]. There are approximately 31 gen-
era described from the Firmicutes family, of which 5% 
are Eubacterium, Ruminococcus and Clostridium. Other 
genera identified by sequencing include Riemeralla, 
Paraprevotella, Tanneralla, Prevotella, Phascolarctobac-
terium, Megamonas, Faecalibacterium, Subdoligranulum 
and Gemmiger. The predominant genera of Proteobacte-
ria include Neissenia, Desulfohalobium, Shigella, Escheri-
chia, Helicobacter and Campylobacter as is the genus 
Phocaeicola in Bacteroidetes  [14, 60, 68, 107]. Although 
some studies report that at 3 weeks of age, the bacterial 
population of the chick changes from Proteobacteria, 
Bacteroides and Firmicutes to only Firmicutes  [68], oth-
ers indicate that anatomically distant sites differ in the 
qualitative composition of the microbiota for example 
Acinetobacter and Acidobacteria predominate in the jeju-
num as Bacteroides and Clostridium in the cecum [4]. At 
least 80% of the total bacterial species present in chicken 
or human caecum cannot yet be cultured in the labora-
tory (naturally occurring in quantity  1010–1011 cells per 
gramme) and can only be identified by high-throughput 
sequencing techniques [2, 4, 60, 91, 107]. Due to a crucial 
role of microbiota in digestion and protection processes, 
the aim of the study was to assess the effect of dietary 
diatomite-bentonite mixture (DBM) supplementation on 
the quantitative and qualitative composition of chicken 
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gut bacterial microbiome. The aim of the study was to 
assess the effect of dietary diatomite-bentonite mixture 
(DBM) supplementation on the quantitative and qualita-
tive composition of chicken gut bacterial microbiome.

Methods
Animal care and welfare
Animals were treated in a manner according to the prin-
ciples stated in Directive 2010/63/EU, regarding the 
protection of animals used for experimental and other 
scientific purposes, enforced in Poland under Acts 
266/2015 and 638/2020  [98]. The practises for animals 
were equivalent to practices undertaken for the purposes 
of recognised animal husbandry and not likely to cause 
pain, suffering, distress, or lasting harm equivalent to, or 
higher than, that caused by the introduction of a needle 
in accordance with good veterinary practise. For this rea-
son, an ethics approval by an institutional review board 
was not necessary according to Directive 2010/63/EU Art 
2.5.e-f (OJ L 276, 0.10.2010, p. 33–79) the Act 2015/266/
RP Art.1.2. (O.J. 2015 pos. 266). The study reported in the 
manuscript follows the recommendations of the ARRIVE 
guidelines [72] and was registered under the number 
BZ/4240/22/WHBZ. The heating and lighting pro-
grammes were in accordance with Ross 308 broiler stock 
management [6].

Experimental design
The trial was carried out at the Experimental Poultry 
Farm in Potok, belonging to Ekoplon S.A. Poland. The 
experiment was conducted on 960 chickens divided into 
2 experimental groups throughout the entire rearing 
period lasting 42 days. Prior to the experiment, the build-
ing and equipment were thoroughly cleaned and dis-
infected in accordance with the principles of veterinary 
biosecurity. Before the chicks were delivered, the hall was 
lined with bedding (peat with wood chips) and heated to 
an air temperature of 34  °C and a floor temperature of 
28 °C. The one-day-old broiler Ross 308 chicks (Aviagen 
EPI ltd, Poland) were randomly divided into two groups 
of equal weight: control (C) and experimental (E), sepa-
rated by gender. In each group there were 6 pens (3 for 
male and 3 for female), with 80 chicks per pen. Sexing 
the animals and maintaining separate male and female 
groups was necessary for the production study. For the 
purposes of this work, only male individuals were used 
to eliminate factors related to the presence of female hor-
mones. The chicks were fed with the same starter type 
diet without the addition of experimental diatomite-ben-
tonite mixture (DBM) for 10 days. This procedure aimed 
to reduce the number of stress-inducing factors during 
the early stage of rearing while providing highly digestible 
feed, recommended for the not fully developed digestive 

tract of chicks. From day 11 of life, the birds were fed 
complete diets without (C group) or with a 1% addition 
(10 kg per 1 t of mixture on a fresh matter basis) of DBM 
(E group) according to the age of the broilers: grower (d 
11–34) and finisher (d 35 to 42). Complete nutritionally 
balanced diets were prepared according to CVB (2018). 
The DBM consisted of 75% diatomite and 25% bentonite, 
prepared as described by Gondek et al. [36]. The animals 
were housed in the same chicken house on both sides of 
the feeding corridor. Feed and water were given ad libi-
tum throughout the entire growing period.

Parasitological analyses
Coproscopical examinations were performed to exclude 
the impact of Eimeria spp. infection on the experiment’s 
results. Fecal samples were collected three times from 
each pen: after the first, third, and final weeks of the rear-
ing period. The samples were then analyzed using the 
quantitative McMaster method with centrifugation [73].

Slaughtering and collection of digesta
Immediately after slaughter (5–10  min), the gastroin-
testinal tract of the males was rapidly removed, and the 
cecum segment was excised. The cecum content (1 to 
1.5 g per bird) was collected into two sterilized tubes (1.5 
mL). In total, 36 samples (18 samples per group) were 
flash-frozen in liquid nitrogen and then stored at −80 °C 
for sequencing. In each sample, analyses were performed 
in triplicate, resulting in 54 replicates sequenced within 
each group. The final body weight at slaughter of the male 
birds selected for digesta collection was 3067 ± 262 g and 
3222 ± 225 g, respectively for the C and E groups.

Sequencing, data calculation, and statistical analysis
Prior to sequencing, the samples were thawed at a con-
trolled temperature. DNA was then isolated using a sil-
ica column-based kit (QIAamp PowerFecal Pro DNA 
Kit, QIAGEN), according to the manufacturer’s instruc-
tions. Following DNA isolation, polymerase chain reac-
tion (PCR) was performed to amplify the 16  S rRNA 
gene regions of the bacterial DNA. This amplification 
was carried out using specific primers provided in the 
16 S Barcoding Kit (Oxford Nanopore), following the kit’s 
protocol. After PCR amplification, the samples were pre-
pared for sequencing according to the Oxford Nanopore 
library preparation protocol. Two 16 S Forward primers 
(NanoF-1 and NanoF-2) with the sequence AGA GTT 
TGATCMTGG CTC AG and one 16  S Reverse primer 
(NanoR) with the sequence CGG TTA CCT TGT TAC 
GAC TT were used. Amplification was performed using 
the following cycling conditions (Table  1). Nanopore 
sequencing was then carried out using the MinIon device 
(Oxford Nanopore). Upon completion of the sequencing, 
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the raw data was processed using the MiniKnow software 
(Oxford Nanopore) to assess the quality of the reads and 
perform base calling. Further analysis, including taxo-
nomic classification of the sequences, was performed 
using the Epi2Me platform (Fastq 16s workflow).

The bacterial microbiome dataset, which includes 
information about different species and their counts, 
was grouped into diatomit and nondiatomit diet groups 
(e.g., treatment groups, E and C respectively). The spe-
cies count data were standardized using the Z score nor-
malization method (StandardScaler) to ensure that each 
species contributed equally to the analysis. Principal 
Component Analysis (PCA) was applied to the stand-
ardized data to reduce dimensionality and identify the 
principal components that captured the majority of the 
variance in the data. A redundancy analysis (RDA) was 
performed by fitting a linear regression model using 
the “group” variable as the predictor and the principal 
components as the response variables. Ordinary least 

squares (OLS) regression was used to estimate the rela-
tionship between the groups and the principal compo-
nents. Multivariate Analysis of Variance (MANOVA) 
was applied to test the differences in the first two prin-
cipal components between the groups, using the formula 
“PC1 + PC2 ~ group.” Additionally, One-Way ANOVA 
tests were performed separately for the first two principal 
components to compare the means between the groups.

Visualisation techniques were employed, including the 
generation of a scatter plot to visualise the distribution 
of the first two principal components for each group, 
and a stacked bar plot to display the percentage of the 
top 10 species for each group. Additionally, a phyloge-
netic tree was constructed to elucidate the evolutionary 
relationships among the identified bacterial species in 
the gut microbiome of both groups. This tree was gen-
erated using aligned 16 S rRNA gene sequences and was 
visualized to highlight the taxonomic classification up 
to the species level for groups C and E. In the statistical 
tests and interpretation phase, the RDA results provided 
information on the relationship between the groups and 
the composition of the species, as represented by the 
principal components. The MANOVA test determined 
whether there were statistically significant differences 
in the principal components between the groups. The 
ANOVA tests for PC1 and PC2 assessed differences in 
the means of these components between the groups, with 
statistical significance determined using P > 0.05.

To identify significant differences in the abundance 
of bacterial taxa between the diatomit and nondiatomit 

Table 1 PCR amplification cycling conditions

Cycle step Temperature Time Number 
of cycles

Initial denaturation 95 °C 1 min 1

Denaturation 95 °C 20 s 30

Annealing 55 °C 30 s

Extension 65 °C 2 min

Final Extension 65 °C 5 min 1

Hold 4 °C ∞

Fig. 1 Average contribution with standard deviation of species specific to all identified sequences in group E with DBM addition and in group C 
without DBM addition
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diet groups, a series of univariate statistical analyses were 
conducted at the phylum, genus, and species levels. For 
each taxonomic level, Fisher’s Exact Test was employed 
to determine whether there were statistically significant 
differences in the abundance of each taxon between 
the two diet groups. To mitigate increased risk of Type 
I errors (false positives) due to multiply comparisons, 
p-values obtained from Fisher’s Exact Tests were adjusted 
using the False Discovery Rate (FDR) method, specifically 
the Benjamini-Hochberg procedure.

The analysis was conducted using the Python pro-
gramming language, leveraging several widely used 
libraries for data manipulation, statistical modeling, and 
visualization. This included Pandas for data manipula-
tion and analysis, Scikit-learn for normalization and 
PCA, Statsmodels for conducting RDA, MANOVA, and 
ANOVA tests, and Matplotlib for generating scatter plots 
and bar plots. For the univariate taxonomic level com-
parisons, the scipy.stats library was utilized to perform 
Fisher’s Exact Tests, while statsmodels.stats.multitest was 
employed to apply the Benjamini-Hochberg FDR correc-
tion to the resulting p-values.

Results
Parasite analyses did not reveal any infection caused by 
coccidia (Eimeria sp.) or helminths, during the whole 
rearing period. In turn, the samples obtained from cecal 
chicken feces from both research groups, with (E) or 
without the addition of DBM (C), differed in the pres-
ence of several species characteristic of each other. 
Sequences assigned isolates to well-known and relatively 
new species. Library coverage ranged from 85 to 99.8% 
for both groups. Limiting the description to species with 
≥ 1% share among all analysed sequences, 36 species in 
group E and 30 species in group C were selected (Fig. 1). 
The specific phyla and genus composition of identified 
sequences is presented in Tables 2, 3, and 4.

Thirteen species occurred only in Group E (Agatho-
baculum butyriciproducens, Anaerobutyricum hallii, 
(A) soehngenii, Blautia producta ATCC 27340 = DSM 
2950, Gordonibacter pamelaeae 7–10-1-b, Helicobacter 
pullorum NCTC 12824, Lactobacillus crispatus, L. hel-
veticus DSM 20075 = CGMCC 1.1877, Mucispirillum 
schaedleri, Phascolarctobacterium faecium, Phocaeicola 
coprocola DSM 17136, P. massiliensis, Ruthenibacterium 
lactatiformans), and 7 in Group C (Anaerostipes butyrat-
icus, Blautia pseudococcoides, Intestinimonas timonen-
sis, Megamonas funiformis YIT 11815, M. hypermegale, 
Neglectibacter timonensis, Phocaeicola plebeius DSM 
17135). The remaining 23 species were confirmed in both 
groups (Acutalibacter muris, Blautia coccoides, (B) gluc-
erasea, Butyricicoccus pullicaecorum, Faecalibacterium 
butyricigenerans, F. duncaniae, F. gallinarum, F. hattorii, 

Table 2 Taxonomic composition of identified sequences

Taxon Cumulative Reads

Bacillota (previously Firmicutes) 962 342

Bacteroidota (previously Bacteroidetes) 39 756

Actinomycetota (previously Actinobacteria) 7 110

Campylobacterota (previously Proteobacteria) 5 785

Pseudomonadota (previously Proteobacteria) 4 468

Deferribacterota 3 323

Thermodesulfobacteriota 408

Lentisphaerota 75

Cyanobacteriota (previously Cyanobacteria) 19

Candidatus Melainabacteria 10

Mycoplasmatota (previously Tenericutes) 7

Synergistota 6

Table 3 The percentage distribution of the cecal microbial 
community the genus level

Genus Group C 
without 
diatomite (%)

Group E 
with 
diatomite 
(%)

p-value Adjusted
p-value

Faecalibacterium 46.44 33.17 < 0.0001 < 0.0001

Gemmiger 16.03 15.81 0.0357 0.0371

Subdoligranulum 11.71 16.92 < 0.0001 < 0.0001

Gorbachella 6.66 7.13 < 0.0001 < 0.0001

Blautia 3.56 3.59 0.6724 0.6724

Allofournierella 3 3.26 < 0.0001 < 0.0001

Lactobacillus 0.95 3.95 < 0.0001 < 0.0001

Phocaeicola 1.38 3.48 < 0.0001 < 0.0001

Limosilactobacillus 1.38 3.04 < 0.0001 < 0.0001

Mediterraneibacter 1.42 2.35 < 0.0001 < 0.0001

Butyricicoccus 0.99 2.6 < 0.0001 < 0.0001

Ligilactobacillus 1.34 0.53 < 0.0001 < 0.0001

Acutalibacter 1.5 0.29 < 0.0001 < 0.0001

Megamonas 1.26 0 < 0.0001 < 0.0001

Fusicatenibacter 0.65 0.48 < 0.0001 < 0.0001

Oscillibacter 0.39 0.52 < 0.0001 < 0.0001

Ruthenibacterium 0 0.84 < 0.0001 < 0.0001

Anaerobutyricum 0 0.81 < 0.0001 < 0.0001

Neglectibacter 0.69 0 < 0.0001 < 0.0001

Intestinimonas 0.43 0 < 0.0001 < 0.0001

Mucispirillum 0 0.35 < 0.0001 < 0.0001

Gordonibacter 0 0.26 < 0.0001 < 0.0001

Helicobacter 0 0.23 < 0.0001 < 0.0001

Phascolarctobac-
terium

0 0.23 < 0.0001 < 0.0001

Anaerostipes 0.23 0 < 0.0001 < 0.0001

Agathobaculum 0 0.17 < 0.0001 < 0.0001
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F. longum, F. prausnitzii, Fournierella massiliensis, Fusi-
catenibacter saccharivorans, Gemmiger formicilis, G. 
gallinarum, Gorbachella massiliensis, Lactobacillus gal-
linarum, Ligilactobacillus salivarius, Limosilactobacillus 
urinaemulieris, Mediterraneibacter glycyrrhizinilyticus, 
Megamonas rupellensis, Oscillibacter massiliensis, Pho-
caeicola dorei, Subdoligranulum variabile).

In Figs. 2 and 3, the taxonomy trees for Group C and 
Group E are respectively presented, extending down to 
the species level. These trees provide a comprehensive 
visual representation of the bacterial communities in 
each group, highlighting the diversity and relative abun-
dance of bacterial taxa. The hierarchically organized per-
centage compositions illustrate differences in dominant 
and less abundant taxa, allowing for a direct comparison 
of the microbial communities between the two groups 
and showcasing how variations in species composition 
impact the overall structure of the microbiome.

Principal Component Analysis (PCA) was conducted 
to understand how the samples differentiate from each 

other based on the presence of various microbial spe-
cies. The two main components (PC1 and PC2) explained 
a significant proportion of the variability in the data 
(Fig.  4). The plot illustrates the pronounced separa-
tion between the two dietary treatments, particularly 
along the PC1 axis, highlighting the influence of diato-
mite on the gut microbiome. Group C (red) represents 
the diet without DBM, and group E (blue) represents 
the diet with DBM. Individual data points are depicted 
for each group and the corresponding ellipses represent 
the spread of the data within each group. PC1 explains 
56.47% of the total variance and significantly differenti-
ates the two groups (ANOVA, F-value: 7.33, P-value: 
0.017), indicating a distinct effect of DBM on microbial 
composition. PC2 accounts for 19.85% of the variance but 
does not differentiate significantly between the groups 
(ANOVA, F-value: 0.35, P-value: 0.565). The highest 
positive correlations with PC1 were observed for the fol-
lowing 10 species: Akkermansia muciniphila, Bacteroides 
thetaiotaomicron, B. vulgatus, Bifidobacterium longum, 

Table 4 The percentage distribution of the cecal microbial community at the phylum level

Phyllum Group C without diatomite (%) Group E with diatomite (%) p-value adjusted p-value

Bacillota 98.62 95.68 < 0.0001 < 0.0001

Bacteroidota 1.38 3.48 < 0.0001 < 0.0001

Deferribacterota 0 0.35 < 0.0001 < 0.0001

Actinomycetota 0 0.26 < 0.0001 < 0.0001

Campylobacterota 0 0.23 < 0.0001 < 0.0001

Fig. 2 Graphical representation of the bacterial communities in Group E with DBM addition, illustrating the taxonomic breakdown and respective 
percentage composition for each branch
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Escherichia coli, Eubacterium rectale, Faecalibacterium 
prausnitzii, Lactobacillus rhamnosus, Roseburia intesti-
nalis and Ruminococcus bromii. These findings suggest 
that the presence of DBM has a significant impact on the 
composition of microbiome in the samples. PC2 did not 
show a significant difference between groups.

A graph of side-by-side horizontal bar charts was cre-
ated to display the percentage of the top 10 species for 
each group (with and without DBM; Fig.  5). Each bar 
represents a single sample, and the colours within the 
bar denote distinct species. The percentage contribution 
of the species was calculated based on the normalized 

Fig. 3 Graphical representation of the bacterial communities in Group C without DBM addition, illustrating the taxonomic breakdown 
and respective percentage composition for each branch

Fig. 4 Principal Component Analysis (PCA) of Microbial Composition Between Diets with and without Diatomite. Group C (without diatomite) 
and Group E (with diatomite)



Page 8 of 19Węsierska et al. BMC Veterinary Research           (2025) 21:13 

read count for each species relative to the sum of the read 
counts. Differences in the structure of the microbiome 
allow the identification of species that may have a par-
ticular impact on the differentiation of groups of chick-
ens with and without the addition of DBM. Until now, 
in poultry, mainly Blautia coccoides, Faecalibacterium 
prausnitzii, Helicobacter pullorum, Lactobacillus galli-
narum and Ligilactobacillus salivarius, identified in this 
work, have been described in the literature due to their 
high frequency or pro-health or disease-promoting prop-
erties. Most of the species identified and presented in this 
work are described in poultry for the first time.

Discussion
Identified species are not insignificant for the health of 
poultry or humans. The human microbiota is correlated 
with the microbiota of raw materials, also of animal ori-
gin. Poultry health is closely related to the quantitative 
and qualitative composition of the gut microbiota [70, 
91]. Functions of the bacteria include host metabolic and 
immune response and thereby influence the development 
and treatment of infections and chronic diseases, as well 

as absorption of nutrients [2, 4, 114]. Young chickens are 
very sensitive to enteropathogen infections because their 
intestinal microbiota is not fully established [18]. The 
health of gastrointestinal tract (GIT) impacts therefore 
animal productivity [4]. Short-chain fatty acids (SCFAs), 
produced by fermentation of dietary fibre by several 
abundant genera of the intestinal microbiota, have been 
reported to induce beneficial effects on energy metabo-
lism [21, 74, 76, 90, 11378 ]. Butyrate is the main energy 
source for colonocytes, and it has protective proper-
ties against colorectal cancer and inflammatory bowel 
diseases inter alia by inhibiting NF-κβ activation and 
interferon-γ expression [11, 12, 47, 59, 76, 93, 104, 114]. 
A potential protective role of gut bacteria was found 
through the reduction of inflammatory cytokines [13, 
67, 68, 90, 101 ]. Subdoligranulum variabile and Faecali-
bacterium genus are e.g. currently recognized as one of 
the most important gut bacteria for human and animals 
health [31, 53, 65, 78, 104] (Table  5). Several authors 
have demonstrated the antimicrobial activity of human 
and avian strains against bacterial pathogens, including 
Campylobacter spp., Clostridium perfringens, Pasteurella 

Fig. 5 Percentage contribution of the Top 10 Microbial Species in each sample. Group C (without diatomite) and Group E (with diatomite)
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multocida, Riemerella anatipestifer, Salmonella enterica 
and Staphylococcus aureus [5, 31, 57, 74, 104]. The com-
petitive exclusion of unfavorable strains depends on the 
production of lactic acid, hydrogen peroxide and bac-
teriocins, as well as the ability of the gut strains to per-
manently colonize the intestine [76]. Lund et  al. [56] 
indicated that the poultry farm environment therefore 
plays a key role in the recruitment and development of 
the gut microbiota on the example of Gemmiger gal-
linarum, Gorbachella massiliensis, Faecalibacterium 
hattorii, F. prausnitzii and Subdoligranulum variabile. 
Faecalibacterium gallinarum and Subdoligranulum vari-
abile were found as the most abundant sequences in this 
work, with an average share of 4.4 to 12.3% among all 
sequences. They are described in the literature as strictly 
anaerobic, mesophilic, non-spore-forming, non-motile, 
rod-shaped, Gram-positive (S. variabile, G. gallinarum) 
or Gram-negative (G. massiliensis, F. gallinarum, F. hat-
tori), host-associated and found in the digestive system 
(cecum, ileum) of birds and mammals, including human. 
They are associated with health-promoting activity  [23]. 
Their major end-product in M2G medium is n-butyrate. 
Furthermore, bacteria are mostly cathalase-negative, 
except for G. gallinarum, and can produce formic (S. var-
iabile, F. hattori) as well as lactic acid (G. gallinarum, F. 
hattori) [26, 37, 40, 82, 114]. Diatomite has already been 
a material for research on the health condition of chicken 
flocks. This mineral was applied during composting of 
chicken faeces and its inhibitory effect on Firmicutes and 
Proteobacteria communities was confirmed [75].

The increasing research reveals several beneficial 
effects and therapeutic properties of butyrate-producing 
bacteria for both humans and animals. A summary of 
the basal metabolism, probiotic qualities and habitat of 
selected strains determined in this study is summarised 
in Table 4. The studies of Pattar et  al. [71] indicate that 
the addition of diatomaceous earth to feed contaminated 
with aflatoxin B1 and ochratoxin A decreased the toxic 
effects of mycotoxins. Therefore, there was an improve-
ment in body weight gain, feed conversion ratio, and feed 
intake, and a reduction in mortality. The addition of this 
mineral to the broilers diets also had a positive effect 
on the higher participation of breast muscles and lower 
fat content of broiler carcasses. Furthermore, the broil-
ers thigh bones were characterized by a higher strength 
as compared to the control group [42,  108]. In turn, in 
the research of Isabirye at al. [44] it has been shown the 
efficacy of diatomite in the treatment of chicken against 
Ascaridia galli and ectoparasites. Birds infected with A. 
galli treated with diatomite supplement showed reduce 
intestinal parasitic load and better controlling mites in 
chicken.

Conclusions
Diatomite used in a mixture with bentonite (DBM) sig-
nificantly alters the microbiome, which may have impli-
cations in the context of the studied environment and the 
health-promoting properties of food. Our analysis identi-
fied bacterial species not previously found in the intesti-
nal contents of chickens, expanding our knowledge of the 
complex interactions in this microbial community. We 
observed that the dietary intervention not only affected 
the abundance and diversity of bacterial species but also 
led to the emergence of potentially beneficial or harmful 
taxa. These findings highlight the intricate and poten-
tially consequential relationship between diet, specifically 
diatomite supplementation, and gut microbiota compo-
sition. The presented results constitute a part of a larger 
analysis, demonstrating that the use of diatomite-ben-
tonite mixture to the broiler chicken diet in an amount of 
1% resulted in a favourable increase in body weight gain, 
with a tendency to higher overall final body weight of the 
birds (Micek et al. unpublished).
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