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Abstract

While the impact of agricultural inputs on crop yields has received considerable attention, their influence on nutri-
tional outcomes has been somewhat neglected. This study aims to fill this gap by examining the role of agricultural
inputs in mitigating child stunting through linear dynamic panel regressions conducted at the country level. By
analysing data from approximately half of the world’s countries over a 20-years period, our findings reveal that mineral
fertilizers make significant positive contributions to reducing child stunting. Other agricultural inputs, such as per-cap-
ita agricultural land and manure exhibit a positive contribution in reducing child stunting, but their statistical signifi-
cance is obtained only in few models. Surprisingly, irrigation appears to have no impact on alleviating child stunting.
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Introduction

With an estimated 691 to 783 million individuals suffer-
ing from hunger in 2022, food security remains a pressing
concern for approximately 9.2% of the global population
[12]. This situation has been exacerbated by the adverse
effects of the Covid-19 pandemic and subsequent geo-
political instability, such as the Russo-Ukrainian war,
leading to an increase of 122 million people experienc-
ing hunger between 2019 and 2022. The lowest percent-
age was recorded in 2017, with approximately 7.6% of the
world population affected by hunger [12]. Thus, despite
decades of steady decline, hunger is on the rise instead
of further reduction. Moreover, considering that nearly
2 billion additional individuals will require food by 2050,
according to United Nations projections [32], it is evident
that food security will be a critical challenge in the com-
ing decades.
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This imperative to increase food production intersects
with another pressing need of our time: reducing green-
house gas (GHG) emissions and, more broadly, environ-
mental pressure [17]. Agriculture serves as the nexus
where these conflicting demands converge. Agriculture,
including animal husbandry, is the primary driver of food
production, yet it is estimated that agriculture, forestry,
and other land uses contribute to approximately 24% of
total global greenhouse gas emissions [16]. Activities
such as deforestation, tillage, and fertilizer use all emit
GHGs [16]. Different agricultural practices and inputs
yield varying production outcomes and environmen-
tal impacts. Therefore, making optimal choices regard-
ing their combination and intensity necessitates a clear
assessment of their benefits and costs.

Environmental costs have been extensively studied,
with research by Jones and Sands [18] and Laborde et al.
[19] investigating the impact of agricultural productiv-
ity gains and subsidies on global greenhouse gas (GHG)
emissions, respectively. Conversely, the manifold benefits
of agriculture have also been thoroughly examined. As a
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vital economic activity, agriculture provides income to
farmers and contributes to national GDP. For instance,
McArthur and McCord [23] explore the effects of agri-
cultural inputs on cereal productivity and subsequent
GDP growth resulting from such productivity gains.
However, the primary function of agricultural produc-
tion, and its most significant and direct benefit, is to pro-
vide nutrition.

While much attention has been devoted to the rela-
tionship between agricultural inputs and productivity,
typically measured as yield per unit of input, nutritional
outcomes are a more intricate phenomenon than mere
food quantity. Though authors such as Fuglie [14] have
extensively researched agricultural productivity, few have
delved into the direct link between agricultural inputs
and nutrition. Some progresses have been made by inves-
tigating the connection between agricultural productivity
and dietary outcomes, as seen in the work of Mughal and
Fontan Sers [25]. However, scant attention has been paid
to the direct impact of agricultural inputs on nutrition,
aside from evaluations of specific programmes target-
ing agricultural inputs, such as fertilizer subsidies, which
often lack generalizability.

This study aims to address this gap by examining the
effect of various agricultural inputs on child stunting,
adopted as a proxy of undernourishment. Drawing on a
large panel of countries spanning 20 years and utilizing
data from the Food and Agriculture Organization of the
United Nations (FAO) and the World Bank, our findings
indicate that mineral fertilizers significantly contribute to
reducing child stunting, with approximately a 0.15-0.2
percentage points decrease for each kilogram per hectare
of combined N-P-K. While per-capita land and manure
also appear to decrease child stunting, their effects are
statistically less robust, and irrigation appears to have no
impact.

The next section provides a short literature review on
the role of agricultural inputs, Sect. "Data and methods"
describes the data and methods used for the analysis,
while Sect. "Results and discussion” presents the results,
discusses them and provide their policy implications.
Finally, Sect. "Conclusions" is devoted to conclusions.

Literature review

Production typically carries adverse environmental con-
sequences, consuming natural resources and often gen-
erating harmful by-products. Agricultural production
is no exception, exerting significant stress on the envi-
ronment. Beyond land and water usage, crucial natural
resources, agricultural production contributes to green-
house gas emissions through land use, exacerbated by the
production and utilization of mineral fertilizers, which
account for approximately 2.1% of global CO; emissions
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[24]. Pesticides also pose environmental concerns, caus-
ing negative externalities such as the reduction of insect
populations [29] and soil microbiological activity [36].
Consequently, increasing land productivity often entails
environmental costs. However, it also allows to reach a
certain level of production using less land, thus accruing
environmental benefits.

Effective decision-making regarding the optimal utili-
zation of agricultural inputs necessitates a comprehen-
sive cost—benefit analysis considering environmental
externalities alongside agriculture’s primary objective of
providing nutrition to the global population. Numerous
studies focus on the role of agricultural inputs in enhanc-
ing productivity and subsequently impacting other eco-
nomic indicators. For example, McArthur and McCord
[23] explore the relationship between inputs and cereal
yields, finding a significant positive correlation, further
revealing that a half-ton increase in staple yields cor-
relates with a 14 to 19% rise in GDP, as corroborated
by Evenson and Gollin [11]. Enhanced agricultural pro-
ductivity has been associated with poverty reduction by
scholars such as De Janvry and Sadoulet [10] and Christi-
aensen et al. [8].

While some researchers investigate macroeconomic
indicators like GDP and poverty reduction [8, 10, 23],
others concentrate on more direct outcomes, such as
nutrition. In imperfect markets, where production and
consumption decisions are intertwined, agricultural pro-
ductivity can directly influence dietary outcomes [30].
For instance, Mughal and Fontan Sers [25] find that a
one percent increase in cereal yields reduces undernour-
ishment by 0.84% in South Asia, echoing the findings of
Shankar et al. [30] regarding nutritional outcomes and
land productivity gains in the same region. However,
Shankar et al. [30] lament the lack of clear evidence link-
ing agricultural inputs and nutrition, noting only rela-
tively strong evidence of the positive impact of livestock
on dietary aspects, especially child growth.

Walls et al. [33] conduct a review focusing on nutri-
tional outcomes and agricultural input subsidies rather
than the inputs themselves, emphasizing the impor-
tance of agricultural productivity for food security and
examining the effects of subsidies on this relationship.
Despite finding some positive effects of input subsidy
programmes on nutritional outcomes, they also highlight
a limited literature on the topic, often confined to spe-
cific countries, and suggest that input subsidies may even
exacerbate food diversification issues. Similarly, Berti
et al. [6] review a broader category of agricultural inter-
ventions, finding only partial and often modest positive
effects on nutritional outcomes.

An aspect that has been better examined is the rela-
tion between trade, particular trade of agricultural
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commodities, and nutritional outcomes. Results, how-
ever, have been very mixed and contradictory. Mary
[21], for example, looks at the effect of free trade on
undernourishment, finding that a greater degree of
trade openness is associated to a higher prevalence of
undernourishment. With regard to obesity, instead, the
opposite seems to hold, with Mary and Stoler [22] find-
ing that trade liberalization helps to reduce it in devel-
oping countries. The result of Mary [21] is in sharp
contrast with Marson et al. [20], that find a positive
role of trade openness, particularly of cereal trade, in
reducing undernourishment. It worth to mention that,
according to this last paper, the beneficial effect of trade
openness in limiting the rate of malnutrition is not due
to an income effect of trade but rather on the impact of
imports, especially of cereals, on other determinants of
food security: e.g. food availability.

Income is another important aspect that has received
attention for its impact on nutritional outcomes. If it
seems almost obvious its role in reducing undernour-
ishment, despite also this fact has found some critiques
by, among others, Wolfe and Behrman [37] and Behr-
man and Wolfe [5], its impact on obesity and other
forms of malnutrition is under debate. Salois et al.
[27] find that elasticities of several nutrients, e.g. cal-
ories, proteins and, particularly fats, are decreasing in
income levels thus implying that low-income countries
are likely to experience an increasing share of fats in
their citizens’ diets along their growth path. In their
meta-analysis, despite finding a significant heterogene-
ity of estimates, Santeramo and Shabnam [28] confirm
a stronger income elasticity for fat and micronutrients
compared to calories and proteins, thus corroborating
the fears of Salois et al. [27]. The higher elasticity of a
detrimental nutrient such as fat has also some positive
implications, such as a high sensitivity to marked based
policy interventions, as evidenced by Abay et al. [1].

Given the mixed evidence and the reliance on
national micro-data in several studies, which lim-
its result generalizability, this paper seeks to adopt a
broader perspective on the relationship between agri-
cultural inputs and nutrition. Although a country-level
analysis sacrifices precision and data quality, it offers
the best, and perhaps only, means of obtaining a com-
prehensive understanding of this relationship. Cover-
ing approximately half of the world’s countries over a
20-year period (2001-2020), this study employs a lin-
ear panel data models, namely difference and system
generalized method of moments (GMM) to assess the
effects of various agricultural inputs on child stunting,
controlling for factors such as per-capita GDP. Through
this approach, the paper aims to provide a robust and
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general estimate of the impact of agricultural inputs on
a proxy of undernourishment such as child stunting.

Data and methods

The analysis is conducted at the country level, encom-
passing all countries for which data are available. The
focus is placed on the role of agricultural inputs on
nutrition and, particularly, on reducing extreme cases
of malnutrition. This last is a very broad and diversified
phenomenon encompassing almost antithetical symp-
toms such as undernourishment and obesity. The anal-
ysis is limited to the first aspect that seems to be more
impacted by agricultural production compared to obe-
sity, for which cultural values and lifestyles have been
found to be major determinants [9, 31].

Despite the availability of a direct measure of under-
nourishment, such as the percentage of undernourished
persons over the whole population offered by FAO,
another indicator has been chosen, namely the percent-
age of children under 5 years old suffering from stunt-
ing, with this being defined as: “low height-for-age. It is
the result of chronic or recurrent under-nutrition, usu-
ally associated with poverty, poor maternal health and
nutrition, frequent illness and/or inappropriate feeding
and care in early life” [34]. The reason for this choice is
that, while undernourishment necessitates nationally
representative household surveys to be computed, child
stunting is an anthropometric measure often routinely
collected by schools or public health offices, as explained
in this FAO document. The degree of data imputation,
therefore, is likely to be far lower for the FAO indicator
of child stunting rather than for the one of undernour-
ishment. Other indicators, such as wasting, energy intake
adequacy and the percentage of severely food insecure
people have been discarded for the same reason or for
paucity of observations. The percentage of children (5
years old or lower) suffering from stunting, together with
all the agricultural related variables, have been retrieved
from FAOSTAT, the statistical arm of FAO.

All the economic indicators, instead, are taken from
the World Bank. Among these, there is constant (2017)
per-capita GDP (GDP_pc PPP) at power purchasing
parity (PPP) and the total population of each country
in each year (Pop_tot). In a second set of regressions,
other economic controls are added, namely inflation rate
(Inflation_r), gross capital formation (Gross_cap_f) and
foreign direct investments (FDI). All of them are in per-
capita terms, as shown in Table 1, and retrieved from the
World Bank data portal.

The main regressors of interest are agricultural inputs,
downloaded from FAOSTAT. Land is proxied by per-cap-
ita agricultural area (Agr_area_pc) and irrigation by the
percentage of agricultural area equipped for irrigation
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Table 1 Descriptive statistics

Variables Mean Std. dev. Min. Max. N. obs. Unit
Child_stunt 20.10 14.50 1.20 61.97 777 %

GDP_pc_PPP 15129 16121 683 108899 784 $/ person
GDP_pc_PPP2 488443 1142496 466 11859098 784 ‘000

Pop_tot 40697 125026 81 1382834 775 N/ 1000
Agr_area_pc 1.78 493 0.01 5267 775 ha / person
Irr_equip_perc 11.67 17.04 0.01 99.98 774 %
Manure_N_ph 16.36 3453 0.08 286.78 775 Kg/ha
NPK_ph 5113 74.38 0.00 435.06 765 Kg/ ha

Pest_ph 2.88 5.86 0.00 41.94 775 Kg/ha
Conflict_deaths 0.53 2.51 0.00 25.83 768 N/ pop. * 100K
N_droughts 0.13 021 0.00 1.00 616 N.

N_floods 1.08 1.50 0.00 14.00 763 N.

Agr_prod 410.22 289.50 31.68 1829.90 728 $/1000

FDI 370759 1531917 —10823053 26572780 775 $/1000
Gross_cap_f 2064865 3432939 0 29239073 735 $/1000
Inf_rate 6.86 14.53 -7.17 274.38 754 %

(Irr_equip_perc). Despite being less precise than the per-
centage of agricultural land under irrigation, also avail-
able from FAOSTAT, the scarcity of observations for this
last variable has determined the choice of the former. As
other crucial agricultural inputs, it is included the per-
hectare summed quantity of nitrogen (N), phosphorus
(P) and potassium (K) applied in soil (NPK_ph), the per-
hectare quantity of agrochemicals (the sum of pesticides,
insecticides and herbicides) (Pest_ph) and the quantity of
N introduced in soil through manure (Manure_N_ph),
also as per-hectare value. FAOSTAT further offers the
number of tractors in use per country, a good proxy of
mechanization, but this series has been discontinued
since 2009 and has few observations. Therefore, a direct
measure of agricultural productivity, namely the per-
capita agricultural produced value (Agr_prod) is used as
regressor, encompassing mechanization and other pro-
ductivity enhancement factors such as knowledge accu-
mulation. In fact, when considered in a regression at
ceteris paribus levels of agricultural inputs, this regressor
should capture all productivity gains not explained by the
same considered inputs.

Finally, as controls for climate variability and conflicts,
potentially important determinants of both agricultural
productivity and malnutrition, three additional variables
have been selected. The first two control for natural dis-
asters, being the yearly number of floods (N_floods) and
droughts (N_droughts), obtained from the EM-DAT
dataset (The International Disaster Database). Despite
the existence of several indicators that are potentially
useful as meteorological—climatic controls, from sim-
ple average temperatures and precipitations to more

elaborate indices such as the Palmer Severity Drought
Index, these risks need to be scarcely meaningful when
condensed at country-yearly level. A second problem is
that the simple number of events is uninformative on
their intensity, but the lack of information on this regard
for a sufficient number of countries-years left the only
option of using the selected variables as a second best.
The number of casualties every hundred thousand per-
sons caused by armed conflicts (Conflict_deaths) is the
last control. Obtained from the Uppsala Conflict Data
Program—UCDD, it includes casualties caused by inter-
national and domestic conflicts with or without the
direct involvement of state entities. Basic statistics for all
mentioned variables are reported in Table 1, while Fig. 2,
in the Appendix, shows the correlation among the most
important variables.

As a last remark, it has to be mentioned that, despite all
variables being yearly values, with 21 years (2000—2020)
of available data, the time periods have been reduced to
7 by taking 3 years averages for all variables: e.g. 2000—
2002, 2003-2005, and so on. Given the persistency of a
phenomenon such as malnutrition, a year-by-year anal-
ysis may be inappropriate returning results that are sta-
tistically not significant!. Despite some variations in the
number of included countries in different models, 85 are
usually represented. As visible in Fig. 1, that depicts in
red the countries included in the analysis, they are mostly
developing nations. Most of Western Europe, in fact,

! I thank an anonymous reviewer for suggesting to use three years averages
instead of yearly values, for pointing at child stunting as a better alternative
to undernourishment as dependent variable and for several other important
suggestions, including the choice of the econometric models.
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Fig. 1 Countries included in the analysis

is excluded for lack of data on the dependent variable.
Given that undernourishment in high income countries
is likely to be detached from agricultural productivity and
mostly linked to distributional disparities, the underrep-
resentation of this category is possibly beneficial for the
present analysis.

The model

Looking at the description of the difference and system
generalized method-of-moments estimators as reported
in Roodman [26], it is easy to see why they have been
selected for the present analysis: “Both are general esti-
mators designed for situations with small T, large N
panels, meaning few time periods and many individuals;
independent variables that are not strictly exogenous,
meaning they are correlated with past and possibly cur-
rent realizations of the error; fixed effects; and heter-
oskedasticity and autocorrelation within individuals”
Proposed by Holtz-Eakin et al. [15], Arellano and Bond
[3], Arellano and Bover [4] and Blundell and Bond [7],
these are linear dynamic panel data models particularly
useful in case of endogenous, or not strictly exogenous,
regressors and paucity, or complete absence, of instru-
ments other than the same regressors.

By having seven time periods (3 years averages over
21 years) and roughly 85 countries, the present case
perfectly falls into the small T, large N situation men-
tioned in Roodman [26]. Furthermore, it is very likely
that historical, institutional and past socio-economic
conditions of countries play a role in determining the
current overall nutritional status, therefore a model
able to account for fixed effects is strongly advisable.

The chosen economic controls, such as per-capita GDP,
and the main regressors, namely the level of various
agricultural inputs, are likely to be affected by nutri-
tional outcomes. Abu-Fatima et al. [2], for example,
estimates a loss of 2.6% of GDP in Sudan caused by
malnutrition, of which 1.5 percentage points are attrib-
utable to reduced productivity. Finally, the persistent
nature of malnutrition, or its slow pace of change, calls
for a dynamic model, since past realizations of the
dependent variable are likely to influence present ones.
For all these reasons, the mentioned linear dynamic
panel data models seem appropriate for the present
case.

The model and its basic assumptions are now summa-
rized by starting with a traditional linear dynamic panel
model of the following type:

Vi =VYit—1BXis + i + €, i .
=1,2,..,n; t=23,.,T, (1)

where y;; is the ith observation of the dependent variable
at time ¢, y;;—1 its lag with coefficient to be estimated y,
X is a matrix of regressors and 3 a vector of associated
coeflicients to be estimated. For simplicity, we consider
only regressors at time ¢, but lagged covariates can be
added without altering the explanation. Similarly, past
lags of the dependent variable, e.g. t — 2, are also allowed
together with eventual time dummies. The element «;
represents the time invariant characteristics of each
ith unit of observation. Following Fritsch et al. [13], the
model is based on these assumptions:



Rogna Agriculture & Food Security (2024) 13:49

The data are independently distributed only across i,

E(ejr) =0, i=1,2.,1m t=273.,T,
E(ei,t -aj) =0, i=12,.,n, t=23,..,T,

E(ejp - €5) =0, i=1,2.,n t#s; (2)
E(yi1-€it) =0, i=12.,m t=23,.,T,

T
n— oo, T fixed= — =0.
n

In order to eliminate the unobserved fixed effect, «;, first
time differences can be taken, so that Eq. (1) becomes:

Ayir =Y Ay 1BAX; s + A€y, i 3
=12,.,n; t=23,.,T. @)

This, however, creates a problem if the model is esti-
mated through OLS since the first difference of the
lagged dependent variable Ay;;—1 = ¥it—1 — yir—2 and
the first difference of the idiosyncratic remainder com-
ponent A€;; = €;+ — €;;—1 are not orthogonal. To obviate
this problem, Holtz-Eakin et al. [15] proposed the follow-
ing linear moment conditions:

EQis-€is) =0, t=34,.,T, s=1,.t—2

(4)
From (4), similar linear moment conditions can be
derived for the covariates, depending on their degree of
exogeneity*:

E(xis-€i)) =0, t=3,4,..,T, with
s=1,..,t —2, if xisendogenous,
s=1,.,t—1, if xispredetermined,
s=1,..,T, if xisexogenous.

Summarizing in a less technical way, both the difference
and system GMM methods share the idea with the stand-
ard panel fixed effect model of differencing the covariates
and the dependent variable in order to get rid of the indi-
vidual-specific unobserved fixed effects. However, given
the presence among the covariates of the lagged depend-
ent variable and of potentially endogenous regressors,
they instrument all variables with their lags, whose num-
ber is determined by their degree of exogeneity.

In the difference GMM model, time differences are
instrumented with levels. The system GMM model add
a set of equations where levels of the regressors are
instrumented by their time differences. This improves
efficiency by adding more instruments, but rests on the
assumption that the time differences of regressors are
uncorrelated with the idiosyncratic fixed effects [26]. In
the present case, this may be a very strong assumption,
since it would entail, for example, that only the level of

2 The previous and the following conditions must be modified accordingly if
other lags of the dependent variable are present.
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GDP is affected by countries unobserved fixed effects
and not GDP growth. Therefore, all regressions except (9)
and (10) have been run with both difference and system
GMM and results are shown for comparison. In general,
significance levels are far lower with difference GMM
than with system GMM, thus the coefficients that are
significant in the latter but not in the former should be
taken with caution since they may be biased by the effect
of idiosyncratic unobserved characteristics.

All regressions have been estimated with the Stata
package xtabond2 [26], using the two-step option, in
which the residuals of the first step estimation are used
to compute the weighting matrix necessary to the GMM
estimator. All the reported p-values, in Tables 2, 3 and
4, have been obtained using Windmeijer [35] standard
errors. Differently from Eq. (3), that uses first differences
for eliminating fixed effects, all estimated regressions
used forward orthogonal deviations, where the average of
all future available observations of a variable is subtracted
to its level at time ¢ instead of the value of the previous
time period [26]. This improves efficiency in unbalanced
datasets with several missing values, as the present case,
by allowing to discard less observations.

Recalling the previous discussion about the degree of
endogeneity of regressors, in all regressions the number
of floods and droughts and the time periods dummies
have been assumed to be strictly exogenous, whereas all
other covariates are treated as endogenous. All available
lags have been used as instruments given the reduced
number of time periods, and the “collapse” option has
been selected to avoid the common problem of an exces-
sive number of instruments. For the regressions from (1)
to (8), Table 5, in the Appendix, reports the coefficients
of the time periods, some basic statistics such as the
number of observations and some diagnostic tests. For
regressions (9) and (10), the same information is reported
in Table 4, except the coefficients of the time periods
that have been omitted. The diagnostic section consists
in the Arellano-Bond test of first and second order auto-
correlation where the null hypothesis is the absence of
autocorrelation. Since the test is conducted on the first-
differenced idiosyncratic errors, the AR(1) null hypoth-
esis should be rejected. In fact, if the error term in levels
is serially uncorrelated, this implies that the error term in
first differences has negative first-order serial correlation.
Furthermore, there should not be second-order serial
correlation, thus the null of AR(2) should not be rejected.
All presented models, from (1) to (10), respect this condi-
tion as visible from Tables 5 and 4. The other reported
p-values refer to the Hansen test of over-identifying
restrictions, whose null hypothesis is that the over-iden-
tifying restrictions are valid. Thus, the null hypothesis
should not be rejected for the instruments to be valid and
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Table 2 Dynamic panel model regressions results

Dependent variable: child stunting (%)

Contemporaneous effect Lagged effect
System GMM  Diff. GMM System Diff. GMM
GMM

(1) (2) (3) (4)
Child_ 1.000916%**  0.981492***  0.9358482***  0.925766***
stunt_L1

(0.0000) (0.0000) (0.0000) (0.0000)
GDP_pc_ 0.0003147*** ~ 0.000190** 0.0002571* 0.000124
PPP

(0.0000) (0.0410) (0.0670) (0.2790)
GDP_pc_ —4.16E-09%**  —1.24E-09 —3.63E-09 —245E-10
PPP2

(0.0040) (0.4080) (0.1500) (0.8760)
Pop_tot 1.30E-06 —0.000010** 3.97E-06* —7.38E-06

(0.2860) (0.0210) (0.0980) (0.3340)
Agr_area_  —0.098684*** —-0.066930  —0.134570** 0.051216
pc

(0.0010) (0.5390) (0.0150) (0.6950)
Irr_equip_ —-0.014149 0.064167 —0.050317 —0.059216
perc

(0.6650) (0.1100) (0.2860) (0.6310)
Manure_N_ —0.001579 -0.025398 0.021061 0.004803
ph

(0.8710) (0.3260) (0.2220) (0.8280)
NPK_ph —0.018327**  —0.008643* —0.029240* —0.010324

(0.0270) (0.0820) (0.0690) (0.2350)
Pest_ph 0.060168 0.008992 0.032874 0.006006

(0.2200) (0.7790) (0.5510) (0.8920)
Conflict_ 0.001866 0.024652 —0.004190 0.021051
deaths

(0.9570) (0.3770) (0.9450) (0.7830)
N_droughts —0.088212 -0.131119  —0.024985 —0.000881

(0.8420) (0.7220) (0.9610) (0.9980)
N_floods 0.133482** 0.092947%* 0.198906* 0.059366*

(0.0240) (0.0110) (0.1000) (0.0980)
CONST. —3.20375%* —1.025374

(0.005) (0.4610)

Significance levels: ¥** = 1%, ** = 5%, * = 10%. P-values in brackets

this holds for all presented models except for model (3),
where the null is rejected at the 10% level of significance.

Results and discussion

Table 2 shows the coefficient estimates of four models, all
having the same regressors but, in the first two models,
(1) and (2), they are contemporaneous, while in (3) and
(4) they are in first lag. As mentioned, the coefficients of
year dummies are reported in Table 5 in the Appendix.
Models (1) and (3) are system GMM while (2) and (4) are
difference GMM. In model (1), all coefficients related to
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Table 3 Regressions results: additional economic controls and
squared terms

Dependent variable: child stunting (%)

Economic controls Squared terms

System GMM  Diff. GMM System GMM  Diff. GMM

) (6) ) @8)
Child_ 1.0436%* 09326426 1023739 1.013486"*
stunt_L1
(0.0000) (0.0000) (0.0000) (0.0000)
GDP_pc_ 0.000324*** 0.000101 0.000296*** 0.000201*
PP
(0.0010) (0.3880) (0.0000) (0.0510)
GDP_pc_ —455E-09*** 1.11E-09 —3.97E-09***  —1.72E-09
PPP2
(0.0040) (0.5550) (0.0010) (0.3190)
Pop_tot 0.000001 —1.16E-05** 1.88E-06 —1.09E-05**
(0.4350) (0.0130) (0.2170) (0.0240)
Agr_area_ —0.128033**  —0.036745 —0.073970"*  —0.135994
pc
(0.0010) (0.7340) (0.0010) (0.1860)
Irr_equip_ —0.042709 0.084230 —0.036491 0.078485
perc
(0.2130) (0.2390) (0.3490) (0.1260)
Manure_N_  —0.031924 —0.053416*  0.009997 —0.012279
ph
(0.1130) (0.1000) (0.7570) (0.8840)
Manure_N_ —0.000110 —5.54E-05
ph2
(0.5490) (0.8890)
NPK_ph —0.012034***  —0.015545* —0.015720 0.005395
(0.0060) (0.0660) (0.1830) (0.6210)
NPK_ph2 —0.000022 —2.90E-05
(0.6620) (0.3420)
Pest_ph 0.233708*** 0.057025 0.366201** 0.082684
(0.0040) (0.4810) (0.0160) (0.2970)
Pest_ph2 —0.007394**  —0.001835
(0.0230) (0.1830)
Conflict_  0056200°* 0038172 0023426 0.007498
deaths
(0.0080) (0.1200) (0.4640) (0.7590)
N_droughts  —0.814289 —0.383438 —0.588088 —-0.341604
(0.1210) (0.2900) (0.1700) (0.3690)
N_floods 0.106631* 0.058062 0.121342% 0.082221*
(0.0950) (0.1880) (0.0390) (0.0570)
FDI 2.92E-08 4.67E-07
(0.9440) (0.3220)
Gross_cap_f 4.53E-08 —1.758-07
(0.7600) (0.3480)
Inf_rate 0.000624 —0.017243
(0.8430) (0.5360)
Const. —3.913445%% —3.838470%**
(0.0080) (0.0010)

Significance levels: *** = 1%, ** = 5%, * = 10%. P-values in brackets

agricultural inputs, namely agricultural land per-capita,
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Table 4 Regressions results: agricultural productivity and low inputs dummy interacted with per-hectare NPK
Dependent variable: child stunting—system GMM (%)
Agricultural productivity Low inputs dummy Ancillary infos
(9) (10) (9) (10)
Child_stunt_L1 0.936592*** 0.996297%** N. Instr. 74 84
(0.0000) (0.0000) N. Obs. 490 584
GDP_pc_PPP 0.000282** 0.000294*** N. Countries 83 85
(0.0180) (0.0010)
GDP_pc_PPP2 —3.33E-09 —3.86E-09%** AB Test AR(1) 0.000 0.001
(0.1060) (0.0050) AB Test AR(2) 0.782 0.744
Pop_tot 2.92E-06 1.31E-06 Hansen Test 0.220 0.268
(0.1540) (0.2450)
Agr_area_pc —0.103575%** —0.100090***
(0.0040) (0.0010)
Irr_equip_perc —0.043159 —0.011304
(0.3110) (0.7210)
Manure_N_ph 0.003862 0.000472
(0.8110) (0.9630)
Pest_ph 0.063919 0.051774
(0.3390) (0.3660)
NPK_ph —0.025255% —0.018837**
(0.0940) (0.0140)
Low_inp*NPK_ph —0.005828
(0.7300)
Agr_prod —0.002506**
(0.0110)
Conflict_deaths —0.007578 0.000311
(0.8670) (0.9930)
N_droughts -0.121436 —0.153940
(0.7580) (0.7370)
N_floods 0.222404%* 0.1333771%*
(0.0220) (0.0360)
Const. —0.4614075
(0.7280)

Significance levels: *** = 1%, ** = 5%, * = 10%. P-values in brackets

irrigation, organic fertilizers (manure), inorganic ferti-
lizers and pesticides, have negative coefficients, except
for the latter. However, only per-capita agricultural land
(Agr_area_pc) and inorganic fertilizers (NPK_ph) are sta-
tistically significant, the former at 1% level and the latter
at 5%. The coefficient of the lagged dependent variable is
significant in all models at the 1% level. Furthermore, it is
positive and close to one, implying a high persistency of
child stunting.

Among the other regressors, only the number of
floods—it is significant in all models except for (6)—and
per-capita GDP are significant (at 5% level the former
and at 1% the latter, both for its level and its squared
form). The number of floods has a positive coefficient,

implying that floods contribute to increase child stunting,
as expected. Less straightforward is the role of per-capita
GDP, since, theoretically, it is expected to decrease child
stunting with declining efficacy. The positive coefficient
of the level, and the negative of the squared term, imply
an opposite scenario. Per-capita GDP is detrimental till
a certain level and then it contributes to reduce child
stunting at an increasing rate.

Model (2), relying on less stringent assumptions, pro-
vides similar results. The main difference is the loss of
significance of per-capita agricultural land in favour of
total population (Pop_tot), now significant at the 5% level
and with a negative coefficient. Furthermore, the square
of per-capita GDP loses significance as well.
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In models (3) and (4), all regressors are present in first
lag. In general, the significance of coefficients is reduced
compared to their counterparts at time ¢. This effect is
stronger for difference GMM, where only the lagged
dependent and the number of floods are significant, with
this last at the 10% level. This suggests that regressors
have a stronger immediate rather than delayed impact.
Regressions with both contemporaneous and lagged
effects have been tested as well, but their results were
similar to model (4), with almost all coefficients being not
statistically significant. For these reasons, in the remain-
ing models regressors are always present solely at time ¢.

Table 2 shows the results of models with additional
economic controls, models (5) and (6), and with the
squared terms of agricultural inputs, models (7) and (8).
The addition of squared terms has the purpose of individ-
uating eventual non-linearities, such as a declining rate
in reducing child stunting. As in the previous table, odd
numbers refer to models estimated with system GMM
and even ones with difference GMM. As additional eco-
nomic controls, per-capita foreign direct investments
(FDI), per-capita gross capital formation (Gross_cap_f)
and inflation rate (Inf rate) are added to the covariates
seen in Table 2. None of them are statistically signifi-
cant in both GMM methods, but some other regressors
are affected by their introduction by changing their sig-
nificance level. Model (5) differs compared to model (1)
insofar the coefficients of pesticides and conflicts gain
significance, both at 1% level. Both of them are positive
and if this is the expected result for conflicts, it is less so
for pesticides. This may be due to the fact that pesticides
are a risk enhancing input, improving yields but increas-
ing the variability of income. However, by looking at
model (7), where the squared term of pesticides is added,
it can be observed that coefficients have the same sign as
per-capita GDP, positive for the level and negative for the
squared term (both significant at 5% level). Thus, pesti-
cides may also contribute to decrease child stunting after
a certain threshold at an increasing rate.

When difference GMM is adopted—model (6)—pes-
ticides and conflicts lose significance, but the coefficient
of manure results significant at the 10% level. Its sign is
negative, as expected, and its magnitude is more than
threefold that of inorganic fertilizers. A possible reason is
that manure is a source of soil organic carbon (SOC), an
important determinant of the ability of plants to absorb
nutrients, whereas inorganic fertilizers are not. As seen
in model (2), and similarly to model (8), the shift from
system to difference GMM causes per-capita agricultural
land to lose significance in favour of total population,
both having a negative coefficient.
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When the squared terms of manure, inorganic fertiliz-
ers and pesticides are added, none of their coefficients,
including the ones related to the levels, are significant
except for pesticides in (7), as already discussed. Also
inorganic fertilizers, whose coefficient is significant in
all other models except in (4), does not reach the 10%
threshold. This may be due to a problem of collinearity
or to an excessive number of regressors. In model (8), in
particular, almost all coefficients are not significant.

The last two models, (9) and (10), are both system
GMM, with the former having the addition of agricultural
production (Agr_prod), as per-capita value, among the
regressors, while the latter the interaction between inor-
ganic fertilizers and a dummy (Low_inp) individuating
countries with a low level of inorganic fertilizers use: the
dummy takes the value of one if less than 25 kg per hec-
tare of combined N, P and K from inorganic fertilizers are
used on agricultural land in one year, with 25 kg/ha being
the median value of NPK_ph. The coefficient of the value
of agricultural productivity should capture the effect on
child stunting of improved agricultural production origi-
nating from means other than inputs intensification: e.g.
advances in agronomic knowledge or mechanization. As
expected, its coefficient is negative and significant (5%
level), implying that improving productivity is beneficial
in reducing child stunting. This also means that, beyond
inputs intensification, there have been significant gains
in productivity in the sampled years originating from
other sources. It has to be noted, however, that its coef-
ficient loses significance if the model is estimated using
difference GMM. The signs and the significance levels of
the other coefficients are fully consistent with model (1)
except for the loss of significance of the square of per-
capita GDP.

If models (7) and (8) had the addition of squared terms for
capturing eventual non-linearities in the effect of agricul-
tural inputs, among which inorganic fertilizers, model (10)
tries to asses if the per-hectare level of combined N, P, and
K has a greater impact in reducing child stunting for lower
starting values. The negative sign of its coefficient would
then imply that additional units of inorganic fertilizers are
more beneficial for countries with low levels of fertilization.
This sounds reasonable, but the coefficient is not significant
and this holds if difference GMM is adopted instead. Once
more, the signs and the significance of the other coefficients
are very similar to model (1).

Policy implications

The present analysis has shown a mild impact of agricul-
tural inputs in reducing child stunting. Despite gener-
ally having the expected negative sign, only few of their
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coefficients are statistically significant. The coefficient
of the combined macro-nutrients from inorganic ferti-
lizers is the main exception, being significant in most of
the estimated models at least at the 10% level. Its aver-
age magnitude ranges between —0.015 and —0.02, imply-
ing that an increase in combined N, P and K of 10 kg per
hectare of agricultural land would likely decrease child
stunting of 0.15-0.2 percentage points. This seems a mild
value since it would take additional 50 kg of N, P and K
from inorganic fertilizers to have a reduction of 1 per-
centage point in child stunting. However, considering
that the median value of NPK_ph is 25 kg and the rec-
ommended quantity of combined N, P and K for several
cereals is well above 200 kg, an intensification in the use
of this input may bring significant benefits in reducing
child stunting. Furthermore, such a low median value
implies that, for several countries, an intensification of
N-P-K use would have a low impact on the environment.
This seems to be particularly true for African countries.
Note that, additional regressions, whose results are not
reported, have been made splitting NPK_ph into its three
components. Despite all their coefficients being negative,
none of them were statistically significant.

The other input with a coefficient often significant
is per-capita agricultural land, although significance is
achieved only under system GMM, leaving the doubt
that idiosyncratic fixed effects may bias this result. Since
agricultural land is mostly fixed, the policy options are
reduced. Favouring land concentration may be a possibil-
ity, but only insofar labour options are available for farm-
ers exiting from the agricultural sector. This would then
call for a balanced growth and for increasing the level
of industrialization and of the third sector. Agricultural
production, or else, improvement in agricultural produc-
tivity not derived from inputs intensification, is another
regressor significant only when system GMM is adopted,
therefore the same caveats as for Agr_area_pc apply.
Mechanization and advances in knowledge are likely ele-
ments represented by this variable, therefore they should
be fostered for reducing malnutrition.

The coefficients of the other agricultural inputs are
almost always not significant. Manure is significant only
in one model, the difference GMM with additional eco-
nomic controls. Its magnitude, however, is far higher than
inorganic fertilizers, thus it is possibly even more ben-
eficial for reducing child stunting. Pesticides are signifi-
cant only in two models, with the level having a puzzling
positive coefficient. When its squared term is introduced,
however, this has a negative coefficient, with a behaviour
similar to per-capita GDP. Finally, it is surprising the lack
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of significance of irrigation in all models, implying this
input is inconsequential in reducing child stunting. Sev-
eral reasons may contribute to explain this fact. First of
all, irrigation is proxied by the area equipped for it, rather
than by the actual irrigated area. Thus, it is a less precise
proxy®. Its inter-temporal variability may also be lower,
further contributing to reduce significance. Finally, the
average value for low-income countries is a mere 5% of
agricultural land equipped for irrigation, with a median
value as low as 0.8%. With such low values, it may not be
able to impact child stunting.

Conclusions

In conclusion, the present study tries to shed light on the
crucial relationship between agricultural inputs and nutri-
tional outcomes, addressing a significant gap in the existing
literature. By using a comprehensive country-level analysis
spanning two decades, inorganic fertilizers have been iden-
tified as the most significant input in reducing child stunt-
ing, chosen as a proxy for undernourishment. Per-capita
agricultural land is the second input in terms of statistical
significance, reaching it in all models estimated through sys-
tem GMM. Manure, pesticides and irrigation are never or
almost never significant.

Clearly, the most immediate message seems to be the
intensification of inorganic fertilizers use, particularly
in countries with very low levels of current adoption. In
such countries, in fact, there might be larger gains and
the environmental impact should be minimal. Mechani-
zation, knowledge and land concentration are likely to be
other factors helpful in reducing child stunting.

The lack of significance of the other agricultural inputs
must be taken with caution rather than being interpreted
as evidence of inconsequentiality. Irrigation, in particular,
has been proxied by a somehow weak variable due to lack
of data in better alternatives. The choice of the dependent
variable may be an additional reason, since child stunt-
ing is a narrow subset of undernourishment and may
be caused by additional factors other than alimentation
alone. It has been chosen as a proxy for undernourish-
ment since this last is plagued by several imputed data,
leading to possible bias. Since undernourishment is likely
to be more directly impacted by agricultural production,
the examined inputs may gain significance. This calls for
better data regarding undernourishment in order to gain
a broader picture compared to the one offered by this

paper.

Appendix
See Fig. 2, Table 5.

3 Adopting the variable of actually irrigated land would have caused the
elimination of several countries, particularly African, from the analysis for
lack of information.
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Table 5 Ancillary information for regressions in Tables 2 and 3

Years dummies (1) (2) (3) (4)

00-02 - - - -

03-05 0.255773 0.174720 0.319497%* 0.531647
06-08 —-0.163919 —0.171393 0.247306 0.186002
09-11 —0.353740** -0.319637 0.200180 -0.112768
12-14 —0.265673** —-0.256717 0.156664 —0.147238
15-17 —-0.104318 —-0.087286 0.092647 —0.035457
18-20 - - - -

Reg. statistics

N. Instr. 77 66 68 57

N. Obs. 504 419 502 417

N. Countries 85 85 85 85
Diagnostic tests P-values

AB test AR(1) 0.001 0.001 0.001 0.001
ABtest AR(2) 0.774 0.749 0977 0.847
Hansen test 0.404 0.594 0.079 0.253
Years dummies (5) (6) (7) (8)

00-02 - - - -

03-05 —0.130085 0407457 0.069195 0.462385
06-08 —0.542102%** —0.013306 —0.388002** 0.378093
09-11 —0.611744%** —0.234650 —0.530272%** 0.293964
12-14 —0467398*% —0.231598 —0418716%** 0.190552%
15-17 —0.190846*** -0.112314 —0.149870* 0.104607
18-20 - - - -

Reg. statistics

N. Instr. 98 84 98 84

N. Obs. 468 387 504 419

N. Countries 81 80 85 85
Diagnostic tests P-values

AB test AR(1) 0.004 0.006 0.008 0.002
ABtest AR(2) 0.763 0442 0.945 0.800
Hansen test 0.832 0498 0.590 0.633

Significance levels: *** = 1%, ** = 5%, * = 10%
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