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The contribution of agricultural inputs 
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Abstract 

While the impact of agricultural inputs on crop yields has received considerable attention, their influence on nutri-
tional outcomes has been somewhat neglected. This study aims to fill this gap by examining the role of agricultural 
inputs in mitigating child stunting through linear dynamic panel regressions conducted at the country level. By 
analysing data from approximately half of the world’s countries over a 20-years period, our findings reveal that mineral 
fertilizers make significant positive contributions to reducing child stunting. Other agricultural inputs, such as per-cap-
ita agricultural land and manure exhibit a positive contribution in reducing child stunting, but their statistical signifi-
cance is obtained only in few models. Surprisingly, irrigation appears to have no impact on alleviating child stunting.
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Introduction
With an estimated 691 to 783 million individuals suffer-
ing from hunger in 2022, food security remains a pressing 
concern for approximately 9.2% of the global population 
[12]. This situation has been exacerbated by the adverse 
effects of the Covid-19 pandemic and subsequent geo-
political instability, such as the Russo-Ukrainian war, 
leading to an increase of 122 million people experienc-
ing hunger between 2019 and 2022. The lowest percent-
age was recorded in 2017, with approximately 7.6% of the 
world population affected by hunger [12]. Thus, despite 
decades of steady decline, hunger is on the rise instead 
of further reduction. Moreover, considering that nearly 
2 billion additional individuals will require food by 2050, 
according to United Nations projections [32], it is evident 
that food security will be a critical challenge in the com-
ing decades.

This imperative to increase food production intersects 
with another pressing need of our time: reducing green-
house gas (GHG) emissions and, more broadly, environ-
mental pressure [17]. Agriculture serves as the nexus 
where these conflicting demands converge. Agriculture, 
including animal husbandry, is the primary driver of food 
production, yet it is estimated that agriculture, forestry, 
and other land uses contribute to approximately 24% of 
total global greenhouse gas emissions [16]. Activities 
such as deforestation, tillage, and fertilizer use all emit 
GHGs [16]. Different agricultural practices and inputs 
yield varying production outcomes and environmen-
tal impacts. Therefore, making optimal choices regard-
ing their combination and intensity necessitates a clear 
assessment of their benefits and costs.

Environmental costs have been extensively studied, 
with research by Jones and Sands [18] and Laborde et al. 
[19] investigating the impact of agricultural productiv-
ity gains and subsidies on global greenhouse gas (GHG) 
emissions, respectively. Conversely, the manifold benefits 
of agriculture have also been thoroughly examined. As a *Correspondence:
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vital economic activity, agriculture provides income to 
farmers and contributes to national GDP. For instance, 
McArthur and McCord [23] explore the effects of agri-
cultural inputs on cereal productivity and subsequent 
GDP growth resulting from such productivity gains. 
However, the primary function of agricultural produc-
tion, and its most significant and direct benefit, is to pro-
vide nutrition.

While much attention has been devoted to the rela-
tionship between agricultural inputs and productivity, 
typically measured as yield per unit of input, nutritional 
outcomes are a more intricate phenomenon than mere 
food quantity. Though authors such as Fuglie [14] have 
extensively researched agricultural productivity, few have 
delved into the direct link between agricultural inputs 
and nutrition. Some progresses have been made by inves-
tigating the connection between agricultural productivity 
and dietary outcomes, as seen in the work of Mughal and 
Fontan Sers [25]. However, scant attention has been paid 
to the direct impact of agricultural inputs on nutrition, 
aside from evaluations of specific programmes target-
ing agricultural inputs, such as fertilizer subsidies, which 
often lack generalizability.

This study aims to address this gap by examining the 
effect of various agricultural inputs on child stunting, 
adopted as a proxy of undernourishment. Drawing on a 
large panel of countries spanning 20 years and utilizing 
data from the Food and Agriculture Organization of the 
United Nations (FAO) and the World Bank, our findings 
indicate that mineral fertilizers significantly contribute to 
reducing child stunting, with approximately a 0.15–0.2 
percentage points decrease for each kilogram per hectare 
of combined N–P–K. While per-capita land and manure 
also appear to decrease child stunting, their effects are 
statistically less robust, and irrigation appears to have no 
impact.

The next section provides a short literature review on 
the role of agricultural inputs, Sect. "Data and methods" 
describes the data and methods used for the analysis, 
while Sect. "Results and discussion" presents the results, 
discusses them and provide their policy implications. 
Finally, Sect. "Conclusions" is devoted to conclusions.

Literature review
Production typically carries adverse environmental con-
sequences, consuming natural resources and often gen-
erating harmful by-products. Agricultural production 
is no exception, exerting significant stress on the envi-
ronment. Beyond land and water usage, crucial natural 
resources, agricultural production contributes to green-
house gas emissions through land use, exacerbated by the 
production and utilization of mineral fertilizers, which 
account for approximately 2.1% of global CO2 emissions 

[24]. Pesticides also pose environmental concerns, caus-
ing negative externalities such as the reduction of insect 
populations [29] and soil microbiological activity [36]. 
Consequently, increasing land productivity often entails 
environmental costs. However, it also allows to reach a 
certain level of production using less land, thus accruing 
environmental benefits.

Effective decision-making regarding the optimal utili-
zation of agricultural inputs necessitates a comprehen-
sive cost–benefit analysis considering environmental 
externalities alongside agriculture’s primary objective of 
providing nutrition to the global population. Numerous 
studies focus on the role of agricultural inputs in enhanc-
ing productivity and subsequently impacting other eco-
nomic indicators. For example, McArthur and McCord 
[23] explore the relationship between inputs and cereal 
yields, finding a significant positive correlation, further 
revealing that a half-ton increase in staple yields cor-
relates with a 14 to 19% rise in GDP, as corroborated 
by Evenson and Gollin [11]. Enhanced agricultural pro-
ductivity has been associated with poverty reduction by 
scholars such as De Janvry and Sadoulet [10] and Christi-
aensen et al. [8].

While some researchers investigate macroeconomic 
indicators like GDP and poverty reduction [8, 10, 23], 
others concentrate on more direct outcomes, such as 
nutrition. In imperfect markets, where production and 
consumption decisions are intertwined, agricultural pro-
ductivity can directly influence dietary outcomes [30]. 
For instance, Mughal and Fontan Sers [25] find that a 
one percent increase in cereal yields reduces undernour-
ishment by 0.84% in South Asia, echoing the findings of 
Shankar et  al. [30] regarding nutritional outcomes and 
land productivity gains in the same region. However, 
Shankar et al. [30] lament the lack of clear evidence link-
ing agricultural inputs and nutrition, noting only rela-
tively strong evidence of the positive impact of livestock 
on dietary aspects, especially child growth.

Walls et  al. [33] conduct a review focusing on nutri-
tional outcomes and agricultural input subsidies rather 
than the inputs themselves, emphasizing the impor-
tance of agricultural productivity for food security and 
examining the effects of subsidies on this relationship. 
Despite finding some positive effects of input subsidy 
programmes on nutritional outcomes, they also highlight 
a limited literature on the topic, often confined to spe-
cific countries, and suggest that input subsidies may even 
exacerbate food diversification issues. Similarly, Berti 
et al. [6] review a broader category of agricultural inter-
ventions, finding only partial and often modest positive 
effects on nutritional outcomes.

An aspect that has been better examined is the rela-
tion between trade, particular trade of agricultural 
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commodities, and nutritional outcomes. Results, how-
ever, have been very mixed and contradictory. Mary 
[21], for example, looks at the effect of free trade on 
undernourishment, finding that a greater degree of 
trade openness is associated to a higher prevalence of 
undernourishment. With regard to obesity, instead, the 
opposite seems to hold, with Mary and Stoler [22] find-
ing that trade liberalization helps to reduce it in devel-
oping countries. The result of Mary [21] is in sharp 
contrast with Marson et  al. [20], that find a positive 
role of trade openness, particularly of cereal trade, in 
reducing undernourishment. It worth to mention that, 
according to this last paper, the beneficial effect of trade 
openness in limiting the rate of malnutrition is not due 
to an income effect of trade but rather on the impact of 
imports, especially of cereals, on other determinants of 
food security: e.g. food availability.

Income is another important aspect that has received 
attention for its impact on nutritional outcomes. If it 
seems almost obvious its role in reducing undernour-
ishment, despite also this fact has found some critiques 
by, among others, Wolfe and Behrman [37] and Behr-
man and Wolfe [5], its impact on obesity and other 
forms of malnutrition is under debate. Salois et  al. 
[27] find that elasticities of several nutrients, e.g. cal-
ories, proteins and, particularly fats, are decreasing in 
income levels thus implying that low-income countries 
are likely to experience an increasing share of fats in 
their citizens’ diets along their growth path. In their 
meta-analysis, despite finding a significant heterogene-
ity of estimates, Santeramo and Shabnam [28] confirm 
a stronger income elasticity for fat and micronutrients 
compared to calories and proteins, thus corroborating 
the fears of Salois et al. [27]. The higher elasticity of a 
detrimental nutrient such as fat has also some positive 
implications, such as a high sensitivity to marked based 
policy interventions, as evidenced by Abay et al. [1].

Given the mixed evidence and the reliance on 
national micro-data in several studies, which lim-
its result generalizability, this paper seeks to adopt a 
broader perspective on the relationship between agri-
cultural inputs and nutrition. Although a country-level 
analysis sacrifices precision and data quality, it offers 
the best, and perhaps only, means of obtaining a com-
prehensive understanding of this relationship. Cover-
ing approximately half of the world’s countries over a 
20-year period (2001–2020), this study employs a lin-
ear panel data models, namely difference and system 
generalized method of moments (GMM) to assess the 
effects of various agricultural inputs on child stunting, 
controlling for factors such as per-capita GDP. Through 
this approach, the paper aims to provide a robust and 

general estimate of the impact of agricultural inputs on 
a proxy of undernourishment such as child stunting.

Data and methods
The analysis is conducted at the country level, encom-
passing all countries for which data are available. The 
focus is placed on the role of agricultural inputs on 
nutrition and, particularly, on reducing extreme cases 
of malnutrition. This last is a very broad and diversified 
phenomenon encompassing almost antithetical symp-
toms such as undernourishment and obesity. The anal-
ysis is limited to the first aspect that seems to be more 
impacted by agricultural production compared to obe-
sity, for which cultural values and lifestyles have been 
found to be major determinants [9, 31].

Despite the availability of a direct measure of under-
nourishment, such as the percentage of undernourished 
persons over the whole population offered by FAO, 
another indicator has been chosen, namely the percent-
age of children under 5 years old suffering from stunt-
ing, with this being defined as: “low height-for-age. It is 
the result of chronic or recurrent under-nutrition, usu-
ally associated with poverty, poor maternal health and 
nutrition, frequent illness and/or inappropriate feeding 
and care in early life” [34]. The reason for this choice is 
that, while undernourishment necessitates nationally 
representative household surveys to be computed, child 
stunting is an anthropometric measure often routinely 
collected by schools or public health offices, as explained 
in this FAO document. The degree of data imputation, 
therefore, is likely to be far lower for the FAO indicator 
of child stunting rather than for the one of undernour-
ishment. Other indicators, such as wasting, energy intake 
adequacy and the percentage of severely food insecure 
people have been discarded for the same reason or for 
paucity of observations. The percentage of children (5 
years old or lower) suffering from stunting, together with 
all the agricultural related variables, have been retrieved 
from FAOST AT, the statistical arm of FAO.

All the economic indicators, instead, are taken from 
the World  Bank. Among these, there is constant (2017) 
per-capita GDP (GDP_pc_PPP) at power purchasing 
parity (PPP) and the total population of each country 
in each year (Pop_tot). In a second set of regressions, 
other economic controls are added, namely inflation rate 
(Inflation_r), gross capital formation (Gross_cap_f) and 
foreign direct investments (FDI). All of them are in per-
capita terms, as shown in Table 1, and retrieved from the 
World Bank data portal.

The main regressors of interest are agricultural inputs, 
downloaded from FAOSTAT. Land is proxied by per-cap-
ita agricultural area (Agr_area_pc) and irrigation by the 
percentage of agricultural area equipped for irrigation 

https://openknowledge.fao.org/server/api/core/bitstreams/c1030ae1-989d-415c-ae82-d3a5457ae983/content
https://doi.org/10.1079/PHN2003595
https://data.worldbank.org/
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(Irr_equip_perc). Despite being less precise than the per-
centage of agricultural land under irrigation, also avail-
able from FAOSTAT, the scarcity of observations for this 
last variable has determined the choice of the former. As 
other crucial agricultural inputs, it is included the per-
hectare summed quantity of nitrogen (N), phosphorus 
(P) and potassium (K) applied in soil (NPK_ph), the per-
hectare quantity of agrochemicals (the sum of pesticides, 
insecticides and herbicides) (Pest_ph) and the quantity of 
N introduced in soil through manure (Manure_N_ph), 
also as per-hectare value. FAOSTAT further offers the 
number of tractors in use per country, a good proxy of 
mechanization, but this series has been discontinued 
since 2009 and has few observations. Therefore, a direct 
measure of agricultural productivity, namely the per-
capita agricultural produced value (Agr_prod) is used as 
regressor, encompassing mechanization and other pro-
ductivity enhancement factors such as knowledge accu-
mulation. In fact, when considered in a regression at 
ceteris paribus levels of agricultural inputs, this regressor 
should capture all productivity gains not explained by the 
same considered inputs.

Finally, as controls for climate variability and conflicts, 
potentially important determinants of both agricultural 
productivity and malnutrition, three additional variables 
have been selected. The first two control for natural dis-
asters, being the yearly number of floods (N_floods) and 
droughts (N_droughts), obtained from the EM- DAT 
dataset (The International Disaster Database). Despite 
the existence of several indicators that are potentially 
useful as meteorological–climatic controls, from sim-
ple average temperatures and precipitations to more 

elaborate indices such as the Palme r Sever ity Droug ht 
Index, these risks need to be scarcely meaningful when 
condensed at country-yearly level. A second problem is 
that the simple number of events is uninformative on 
their intensity, but the lack of information on this regard 
for a sufficient number of countries-years left the only 
option of using the selected variables as a second best. 
The number of casualties every hundred thousand per-
sons caused by armed conflicts (Conflict_deaths) is the 
last control. Obtained from the Uppsa la Confl ict Data 
Progr am—UCDP, it includes casualties caused by inter-
national and domestic conflicts with or without the 
direct involvement of state entities. Basic statistics for all 
mentioned variables are reported in Table 1, while Fig. 2, 
in the Appendix, shows the correlation among the most 
important variables.

As a last remark, it has to be mentioned that, despite all 
variables being yearly values, with 21 years (2000–2020) 
of available data, the time periods have been reduced to 
7 by taking 3 years averages for all variables: e.g. 2000–
2002, 2003–2005, and so on. Given the persistency of a 
phenomenon such as malnutrition, a year-by-year anal-
ysis may be inappropriate returning results that are sta-
tistically not significant1. Despite some variations in the 
number of included countries in different models, 85 are 
usually represented. As visible in Fig.  1, that depicts in 
red the countries included in the analysis, they are mostly 
developing nations. Most of Western Europe, in fact, 

Table 1 Descriptive statistics

Variables Mean Std. dev. Min. Max. N. obs. Unit

Child_stunt 20.10 14.50 1.20 61.97 777 %

GDP_pc_PPP 15129 16121 683 108899 784 $ / person

GDP_pc_PPP2 488443 1142496 466 11859098 784 ’000

Pop_tot 40697 125026 81 1382834 775 N / 1000

Agr_area_pc 1.78 4.93 0.01 52.67 775 ha / person

Irr_equip_perc 11.67 17.04 0.01 99.98 774 %

Manure_N_ph 16.36 34.53 0.08 286.78 775 Kg / ha

NPK_ph 51.13 74.38 0.00 435.06 765 Kg / ha

Pest_ph 2.88 5.86 0.00 41.94 775 Kg / ha

Conflict_deaths 0.53 2.51 0.00 25.83 768 N / pop. * 100K

N_droughts 0.13 0.21 0.00 1.00 616 N.

N_floods 1.08 1.50 0.00 14.00 763 N.

Agr_prod 410.22 289.50 31.68 1829.90 728 $ / 1000

FDI 370759 1531917 − 10823053 26572780 775 $ / 1000

Gross_cap_f 2064865 3432939 0 29239073 735 $ / 1000

Inf_rate 6.86 14.53 − 7.17 274.38 754 %

1 I thank an anonymous reviewer for suggesting to use three years averages 
instead of yearly values, for pointing at child stunting as a better alternative 
to undernourishment as dependent variable and for several other important 
suggestions, including the choice of the econometric models.

https://www.emdat.be/
https://climatedataguide.ucar.edu/climate-data/palmer-drought-severity-index-pdsi
https://climatedataguide.ucar.edu/climate-data/palmer-drought-severity-index-pdsi
https://ucdp.uu.se/
https://ucdp.uu.se/
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is excluded for lack of data on the dependent variable. 
Given that undernourishment in high income countries 
is likely to be detached from agricultural productivity and 
mostly linked to distributional disparities, the underrep-
resentation of this category is possibly beneficial for the 
present analysis.

The model
Looking at the description of the difference and system 
generalized method-of-moments estimators as reported 
in Roodman [26], it is easy to see why they have been 
selected for the present analysis: “Both are general esti-
mators designed for situations with small T, large N 
panels, meaning few time periods and many individuals; 
independent variables that are not strictly exogenous, 
meaning they are correlated with past and possibly cur-
rent realizations of the error; fixed effects; and heter-
oskedasticity and autocorrelation within individuals”. 
Proposed by Holtz-Eakin et  al. [15], Arellano and Bond 
[3], Arellano and Bover [4] and Blundell and Bond [7], 
these are linear dynamic panel data models particularly 
useful in case of endogenous, or not strictly exogenous, 
regressors and paucity, or complete absence, of instru-
ments other than the same regressors.

By having seven time periods (3 years averages over 
21 years) and roughly 85 countries, the present case 
perfectly falls into the small T, large N situation men-
tioned in Roodman [26]. Furthermore, it is very likely 
that historical, institutional and past socio-economic 
conditions of countries play a role in determining the 
current overall nutritional status, therefore a model 
able to account for fixed effects is strongly advisable. 

The chosen economic controls, such as per-capita GDP, 
and the main regressors, namely the level of various 
agricultural inputs, are likely to be affected by nutri-
tional outcomes. Abu-Fatima et  al. [2], for example, 
estimates a loss of 2.6% of GDP in Sudan caused by 
malnutrition, of which 1.5 percentage points are attrib-
utable to reduced productivity. Finally, the persistent 
nature of malnutrition, or its slow pace of change, calls 
for a dynamic model, since past realizations of the 
dependent variable are likely to influence present ones. 
For all these reasons, the mentioned linear dynamic 
panel data models seem appropriate for the present 
case.

The model and its basic assumptions are now summa-
rized by starting with a traditional linear dynamic panel 
model of the following type:

where yi,t is the i th observation of the dependent variable 
at time t, yi,t−1 its lag with coefficient to be estimated γ , 
Xi,t is a matrix of regressors and B a vector of associated 
coefficients to be estimated. For simplicity, we consider 
only regressors at time t, but lagged covariates can be 
added without altering the explanation. Similarly, past 
lags of the dependent variable, e.g. t − 2 , are also allowed 
together with eventual time dummies. The element αi 
represents the time invariant characteristics of each 
i th unit of observation. Following Fritsch et al. [13], the 
model is based on these assumptions:

(1)
yi,t =γ yi,t−1BXi,t + αi + εi,t , i

= 1, 2, ..., n; t = 2, 3, ...,T ,

Fig. 1 Countries included in the analysis
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In order to eliminate the unobserved fixed effect, αi , first 
time differences can be taken, so that Eq. (1) becomes:

This, however, creates a problem if the model is esti-
mated through OLS since the first difference of the 
lagged dependent variable �yi,t−1 = yi,t−1 − yi,t−2 and 
the first difference of the idiosyncratic remainder com-
ponent �ǫi,t = ǫi,t − ǫi,t−1 are not orthogonal. To obviate 
this problem, Holtz-Eakin et al. [15] proposed the follow-
ing linear moment conditions:

From (4), similar linear moment conditions can be 
derived for the covariates, depending on their degree of 
exogeneity2:

Summarizing in a less technical way, both the difference 
and system GMM methods share the idea with the stand-
ard panel fixed effect model of differencing the covariates 
and the dependent variable in order to get rid of the indi-
vidual-specific unobserved fixed effects. However, given 
the presence among the covariates of the lagged depend-
ent variable and of potentially endogenous regressors, 
they instrument all variables with their lags, whose num-
ber is determined by their degree of exogeneity.

In the difference GMM model, time differences are 
instrumented with levels. The system GMM model add 
a set of equations where levels of the regressors are 
instrumented by their time differences. This improves 
efficiency by adding more instruments, but rests on the 
assumption that the time differences of regressors are 
uncorrelated with the idiosyncratic fixed effects [26]. In 
the present case, this may be a very strong assumption, 
since it would entail, for example, that only the level of 

(2)

The data are independently distributed only across i,

E(εi,t ) = 0, i = 1, 2, ..., n; t = 2, 3, ...,T ,

E(εi,t · αi) = 0, i = 1, 2, ..., n; t = 2, 3, ...,T ,

E(εi,t · εi,s) = 0, i = 1, 2, ..., n; t �= s;

E(yi,1 · εi,t ) = 0, i = 1, 2, ..., n; t = 2, 3, ...,T ,

n → ∞,T fixed ⇒
T
n

= 0.

(3)
�yi,t =γ�yi,t−1B�Xi,t +�εi,t , i

= 1, 2, ..., n; t = 2, 3, ...,T .

(4)
E(yi,s · ǫi,t) = 0, t = 3, 4, ...,T , s = 1, ..., t − 2.

E(xi,s · ǫi,t) = 0, t = 3, 4, ...,T , with

s = 1, ..., t − 2, if x is endogenous,

s = 1, ..., t − 1, if x is predetermined,

s = 1, ...,T , if x is exogenous.

GDP is affected by countries unobserved fixed effects 
and not GDP growth. Therefore, all regressions except (9) 
and (10) have been run with both difference and system 
GMM and results are shown for comparison. In general, 
significance levels are far lower with difference GMM 
than with system GMM, thus the coefficients that are 
significant in the latter but not in the former should be 
taken with caution since they may be biased by the effect 
of idiosyncratic unobserved characteristics.

All regressions have been estimated with the Stata 
package xtabond2 [26], using the two-step option, in 
which the residuals of the first step estimation are used 
to compute the weighting matrix necessary to the GMM 
estimator. All the reported p-values, in Tables  2, 3 and 
4, have been obtained using Windmeijer [35] standard 
errors. Differently from Eq. (3), that uses first differences 
for eliminating fixed effects, all estimated regressions 
used forward orthogonal deviations, where the average of 
all future available observations of a variable is subtracted 
to its level at time t instead of the value of the previous 
time period [26]. This improves efficiency in unbalanced 
datasets with several missing values, as the present case, 
by allowing to discard less observations.

Recalling the previous discussion about the degree of 
endogeneity of regressors, in all regressions the number 
of floods and droughts and the time periods dummies 
have been assumed to be strictly exogenous, whereas all 
other covariates are treated as endogenous. All available 
lags have been used as instruments given the reduced 
number of time periods, and the “collapse” option has 
been selected to avoid the common problem of an exces-
sive number of instruments. For the regressions from (1) 
to (8), Table 5, in the Appendix, reports the coefficients 
of the time periods, some basic statistics such as the 
number of observations and some diagnostic tests. For 
regressions (9) and (10), the same information is reported 
in Table  4, except the coefficients of the time periods 
that have been omitted. The diagnostic section consists 
in the Arellano-Bond test of first and second order auto-
correlation where the null hypothesis is the absence of 
autocorrelation. Since the test is conducted on the first-
differenced idiosyncratic errors, the AR(1) null hypoth-
esis should be rejected. In fact, if the error term in levels 
is serially uncorrelated, this implies that the error term in 
first differences has negative first-order serial correlation. 
Furthermore, there should not be second-order serial 
correlation, thus the null of AR(2) should not be rejected. 
All presented models, from (1) to (10), respect this condi-
tion as visible from Tables 5 and   4. The other reported 
p-values refer to the Hansen test of over-identifying 
restrictions, whose null hypothesis is that the over-iden-
tifying restrictions are valid. Thus, the null hypothesis 
should not be rejected for the instruments to be valid and 

2 The previous and the following conditions must be modified accordingly if 
other lags of the dependent variable are present.
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this holds for all presented models except for model (3), 
where the null is rejected at the 10% level of significance.

Results and discussion
Table 2 shows the coefficient estimates of four models, all 
having the same regressors but, in the first two models, 
(1) and (2), they are contemporaneous, while in (3) and 
(4) they are in first lag. As mentioned, the coefficients of 
year dummies are reported in Table  5 in the Appendix. 
Models (1) and (3) are system GMM while (2) and (4) are 
difference GMM. In model (1), all coefficients related to 

agricultural inputs, namely agricultural land per-capita, 

Table 2 Dynamic panel model regressions results

Significance levels: *** = 1%, ** = 5%, * = 10%. P-values in brackets

Dependent variable: child stunting (%)

Contemporaneous effect Lagged effect

System GMM Diff. GMM System 
GMM

Diff. GMM

(1) (2) (3) (4)

Child_
stunt_L1

1.000916*** 0.981492*** 0.9358482*** 0.925766***

(0.0000) (0.0000) (0.0000) (0.0000)

GDP_pc_
PPP

0.0003147*** 0.000190** 0.0002571* 0.000124

(0.0000) (0.0410) (0.0670) (0.2790)

GDP_pc_
PPP2

 − 4.16E−09***  − 1.24E−09  − 3.63E−09  − 2.45E−10

(0.0040) (0.4080) (0.1500) (0.8760)

Pop_tot 1.30E−06  − 0.000010** 3.97E−06*  − 7.38E−06

(0.2860) (0.0210) (0.0980) (0.3340)

Agr_area_
pc

 − 0.098684***  − 0.066930  − 0.134570** 0.051216

(0.0010) (0.5390) (0.0150) (0.6950)

Irr_equip_
perc

 − 0.014149 0.064167  − 0.050317  − 0.059216

(0.6650) (0.1100) (0.2860) (0.6310)

Manure_N_
ph

 − 0.001579 -0.025398 0.021061 0.004803

(0.8710) (0.3260) (0.2220) (0.8280)

NPK_ph  − 0.018327**  − 0.008643*  − 0.029240*  − 0.010324

(0.0270) (0.0820) (0.0690) (0.2350)

Pest_ph 0.060168 0.008992 0.032874 0.006006

(0.2200) (0.7790) (0.5510) (0.8920)

Conflict_
deaths

0.001866 0.024652  − 0.004190 0.021051

(0.9570) (0.3770) (0.9450) (0.7830)

N_droughts  − 0.088212  − 0.131119  − 0.024985  − 0.000881

(0.8420) (0.7220) (0.9610) (0.9980)

N_floods 0.133482** 0.092947** 0.198906* 0.059366*

(0.0240) (0.0110) (0.1000) (0.0980)

Const. − 3.29375***  − 1.025374

(0.005) (0.4610)

Table 3 Regressions results: additional economic controls and 
squared terms

Significance levels: *** = 1%, ** = 5%, * = 10%. P-values in brackets

Dependent variable: child stunting (%)

Economic controls Squared terms

System GMM Diff. GMM System GMM Diff. GMM

(5) (6) (7) (8)

Child_
stunt_L1

1.0436*** 0.9326426*** 1.023739*** 1.013486***

(0.0000) (0.0000) (0.0000) (0.0000)

GDP_pc_
PPP

0.000324*** 0.000101 0.000296*** 0.000201*

(0.0010) (0.3880) (0.0000) (0.0510)

GDP_pc_
PPP2

 − 4.55E−09*** 1.11E−09  − 3.97E−09***  − 1.72E−09

(0.0040) (0.5550) (0.0010) (0.3190)

Pop_tot 0.000001  − 1.16E−05** 1.88E−06  − 1.09E−05**

(0.4350) (0.0130) (0.2170) (0.0240)

Agr_area_
pc

 − 0.128033***  − 0.036745  − 0.073970***  − 0.135994

(0.0010) (0.7340) (0.0010) (0.1860)

Irr_equip_
perc

 − 0.042709 0.084230  − 0.036491 0.078485

(0.2130) (0.2390) (0.3490) (0.1260)

Manure_N_
ph

 − 0.031924  − 0.053416* 0.009997  − 0.012279

(0.1130) (0.1000) (0.7570) (0.8840)

Manure_N_
ph2

 − 0.000110  − 5.54E−05

(0.5490) (0.8890)

NPK_ph  − 0.012034***  − 0.015545*  − 0.015720 0.005395

(0.0060) (0.0660) (0.1830) (0.6210)

NPK_ph2  − 0.000022  − 2.90E−05

(0.6620) (0.3420)

Pest_ph 0.233708*** 0.057025 0.366201** 0.082684

(0.0040) (0.4810) (0.0160) (0.2970)

Pest_ph2  − 0.007394**  − 0.001835

(0.0230) (0.1830)

Conflict_
deaths

0.056200*** 0.038172 0.023426 0.007498

(0.0080) (0.1200) (0.4640) (0.7590)

N_droughts  − 0.814289  − 0.383438  − 0.588088  − 0.341604

(0.1210) (0.2900) (0.1700) (0.3690)

N_floods 0.106631* 0.058062 0.121342* 0.082221*

(0.0950) (0.1880) (0.0390) (0.0570)

FDI 2.92E−08 4.67E−07

(0.9440) (0.3220)

Gross_cap_f 4.53E−08  − 1.75E−07

(0.7600) (0.3480)

Inf_rate 0.000624  − 0.017243

(0.8430) (0.5360)

Const. − 3.913445***  − 3.838470***

(0.0080) (0.0010)
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irrigation, organic fertilizers (manure), inorganic ferti-
lizers and pesticides, have negative coefficients, except 
for the latter. However, only per-capita agricultural land 
(Agr_area_pc) and inorganic fertilizers (NPK_ph) are sta-
tistically significant, the former at 1% level and the latter 
at 5%. The coefficient of the lagged dependent variable is 
significant in all models at the 1% level. Furthermore, it is 
positive and close to one, implying a high persistency of 
child stunting.

Among the other regressors, only the number of 
floods—it is significant in all models except for (6)—and 
per-capita GDP are significant (at 5% level the former 
and at 1% the latter, both for its level and its squared 
form). The number of floods has a positive coefficient, 

implying that floods contribute to increase child stunting, 
as expected. Less straightforward is the role of per-capita 
GDP, since, theoretically, it is expected to decrease child 
stunting with declining efficacy. The positive coefficient 
of the level, and the negative of the squared term, imply 
an opposite scenario. Per-capita GDP is detrimental till 
a certain level and then it contributes to reduce child 
stunting at an increasing rate.

Model (2), relying on less stringent assumptions, pro-
vides similar results. The main difference is the loss of 
significance of per-capita agricultural land in favour of 
total population (Pop_tot), now significant at the 5% level 
and with a negative coefficient. Furthermore, the square 
of per-capita GDP loses significance as well.

Table 4 Regressions results: agricultural productivity and low inputs dummy interacted with per-hectare NPK

Significance levels: *** = 1%, ** = 5%, * = 10%. P-values in brackets

Dependent variable: child stunting—system GMM (%)

Agricultural productivity Low inputs dummy Ancillary infos

(9) (10) (9) (10)

Child_stunt_L1 0.936592*** 0.996297*** N. Instr. 74 84

(0.0000) (0.0000) N. Obs. 490 584

GDP_pc_PPP 0.000282** 0.000294*** N. Countries 83 85

(0.0180) (0.0010)

GDP_pc_PPP2  − 3.33E-09  − 3.86E-09*** AB Test AR(1) 0.000 0.001

(0.1060) (0.0050) AB Test AR(2) 0.782 0.744

Pop_tot 2.92E-06 1.31E-06 Hansen Test 0.220 0.268

(0.1540) (0.2450)

Agr_area_pc  − 0.103575***  − 0.100090***

(0.0040) (0.0010)

Irr_equip_perc  − 0.043159  − 0.011304

(0.3110) (0.7210)

Manure_N_ph 0.003862 0.000472

(0.8110) (0.9630)

Pest_ph 0.063919 0.051774

(0.3390) (0.3660)

NPK_ph  − 0.025255*  − 0.018837**

(0.0940) (0.0140)

Low_inp*NPK_ph  − 0.005828

(0.7300)

Agr_prod  − 0.002506**

(0.0110)

Conflict_deaths  − 0.007578 0.000311

(0.8670) (0.9930)

N_droughts  − 0.121436  − 0.153940

(0.7580) (0.7370)

N_floods 0.222404** 0.133371**

(0.0220) (0.0360)

Const.  − 0.4614075

(0.7280)
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In models (3) and (4), all regressors are present in first 
lag. In general, the significance of coefficients is reduced 
compared to their counterparts at time t. This effect is 
stronger for difference GMM, where only the lagged 
dependent and the number of floods are significant, with 
this last at the 10% level. This suggests that regressors 
have a stronger immediate rather than delayed impact. 
Regressions with both contemporaneous and lagged 
effects have been tested as well, but their results were 
similar to model (4), with almost all coefficients being not 
statistically significant. For these reasons, in the remain-
ing models regressors are always present solely at time t.

Table  2 shows the results of models with additional 
economic controls, models (5) and (6), and with the 
squared terms of agricultural inputs, models (7) and (8). 
The addition of squared terms has the purpose of individ-
uating eventual non-linearities, such as a declining rate 
in reducing child stunting. As in the previous table, odd 
numbers refer to models estimated with system GMM 
and even ones with difference GMM. As additional eco-
nomic controls, per-capita foreign direct investments 
(FDI), per-capita gross capital formation (Gross_cap_f) 
and inflation rate (Inf_rate) are added to the covariates 
seen in Table  2. None of them are statistically signifi-
cant in both GMM methods, but some other regressors 
are affected by their introduction by changing their sig-
nificance level. Model (5) differs compared to model (1) 
insofar the coefficients of pesticides and conflicts gain 
significance, both at 1% level. Both of them are positive 
and if this is the expected result for conflicts, it is less so 
for pesticides. This may be due to the fact that pesticides 
are a risk enhancing input, improving yields but increas-
ing the variability of income. However, by looking at 
model (7), where the squared term of pesticides is added, 
it can be observed that coefficients have the same sign as 
per-capita GDP, positive for the level and negative for the 
squared term (both significant at 5% level). Thus, pesti-
cides may also contribute to decrease child stunting after 
a certain threshold at an increasing rate.

When difference GMM is adopted—model (6)—pes-
ticides and conflicts lose significance, but the coefficient 
of manure results significant at the 10% level. Its sign is 
negative, as expected, and its magnitude is more than 
threefold that of inorganic fertilizers. A possible reason is 
that manure is a source of soil organic carbon (SOC), an 
important determinant of the ability of plants to absorb 
nutrients, whereas inorganic fertilizers are not. As seen 
in model (2), and similarly to model (8), the shift from 
system to difference GMM causes per-capita agricultural 
land to lose significance in favour of total population, 
both having a negative coefficient.

When the squared terms of manure, inorganic fertiliz-
ers and pesticides are added, none of their coefficients, 
including the ones related to the levels, are significant 
except for pesticides in (7), as already discussed. Also 
inorganic fertilizers, whose coefficient is significant in 
all other models except in (4), does not reach the 10% 
threshold. This may be due to a problem of collinearity 
or to an excessive number of regressors. In model (8), in 
particular, almost all coefficients are not significant.

The last two models, (9) and (10), are both system 
GMM, with the former having the addition of agricultural 
production (Agr_prod), as per-capita value, among the 
regressors, while the latter the interaction between inor-
ganic fertilizers and a dummy (Low_inp) individuating 
countries with a low level of inorganic fertilizers use: the 
dummy takes the value of one if less than 25 kg per hec-
tare of combined N, P and K from inorganic fertilizers are 
used on agricultural land in one year, with 25 kg/ha being 
the median value of NPK_ph. The coefficient of the value 
of agricultural productivity should capture the effect on 
child stunting of improved agricultural production origi-
nating from means other than inputs intensification: e.g. 
advances in agronomic knowledge or mechanization. As 
expected, its coefficient is negative and significant (5% 
level), implying that improving productivity is beneficial 
in reducing child stunting. This also means that, beyond 
inputs intensification, there have been significant gains 
in productivity in the sampled years originating from 
other sources. It has to be noted, however, that its coef-
ficient loses significance if the model is estimated using 
difference GMM. The signs and the significance levels of 
the other coefficients are fully consistent with model (1) 
except for the loss of significance of the square of per-
capita GDP.

If models (7) and (8) had the addition of squared terms for 
capturing eventual non-linearities in the effect of agricul-
tural inputs, among which inorganic fertilizers, model (10) 
tries to asses if the per-hectare level of combined N, P, and 
K has a greater impact in reducing child stunting for lower 
starting values. The negative sign of its coefficient would 
then imply that additional units of inorganic fertilizers are 
more beneficial for countries with low levels of fertilization. 
This sounds reasonable, but the coefficient is not significant 
and this holds if difference GMM is adopted instead. Once 
more, the signs and the significance of the other coefficients 
are very similar to model (1).

Policy implications
The present analysis has shown a mild impact of agricul-
tural inputs in reducing child stunting. Despite gener-
ally having the expected negative sign, only few of their 
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coefficients are statistically significant. The coefficient 
of the combined macro-nutrients from inorganic ferti-
lizers is the main exception, being significant in most of 
the estimated models at least at the 10% level. Its aver-
age magnitude ranges between − 0.015 and − 0.02, imply-
ing that an increase in combined N, P and K of 10 kg per 
hectare of agricultural land would likely decrease child 
stunting of 0.15–0.2 percentage points. This seems a mild 
value since it would take additional 50 kg of N, P and K 
from inorganic fertilizers to have a reduction of 1 per-
centage point in child stunting. However, considering 
that the median value of NPK_ph is 25 kg and the rec-
ommended quantity of combined N, P and K for several 
cereals is well above 200 kg, an intensification in the use 
of this input may bring significant benefits in reducing 
child stunting. Furthermore, such a low median value 
implies that, for several countries, an intensification of 
N–P–K use would have a low impact on the environment. 
This seems to be particularly true for African countries. 
Note that, additional regressions, whose results are not 
reported, have been made splitting NPK_ph into its three 
components. Despite all their coefficients being negative, 
none of them were statistically significant.

The other input with a coefficient often significant 
is per-capita agricultural land, although significance is 
achieved only under system GMM, leaving the doubt 
that idiosyncratic fixed effects may bias this result. Since 
agricultural land is mostly fixed, the policy options are 
reduced. Favouring land concentration may be a possibil-
ity, but only insofar labour options are available for farm-
ers exiting from the agricultural sector. This would then 
call for a balanced growth and for increasing the level 
of industrialization and of the third sector. Agricultural 
production, or else, improvement in agricultural produc-
tivity not derived from inputs intensification, is another 
regressor significant only when system GMM is adopted, 
therefore the same caveats as for Agr_area_pc apply. 
Mechanization and advances in knowledge are likely ele-
ments represented by this variable, therefore they should 
be fostered for reducing malnutrition.

The coefficients of the other agricultural inputs are 
almost always not significant. Manure is significant only 
in one model, the difference GMM with additional eco-
nomic controls. Its magnitude, however, is far higher than 
inorganic fertilizers, thus it is possibly even more ben-
eficial for reducing child stunting. Pesticides are signifi-
cant only in two models, with the level having a puzzling 
positive coefficient. When its squared term is introduced, 
however, this has a negative coefficient, with a behaviour 
similar to per-capita GDP. Finally, it is surprising the lack 

of significance of irrigation in all models, implying this 
input is inconsequential in reducing child stunting. Sev-
eral reasons may contribute to explain this fact. First of 
all, irrigation is proxied by the area equipped for it, rather 
than by the actual irrigated area. Thus, it is a less precise 
proxy3. Its inter-temporal variability may also be lower, 
further contributing to reduce significance. Finally, the 
average value for low-income countries is a mere 5% of 
agricultural land equipped for irrigation, with a median 
value as low as 0.8%. With such low values, it may not be 
able to impact child stunting.

Conclusions
In conclusion, the present study tries to shed light on the 
crucial relationship between agricultural inputs and nutri-
tional outcomes, addressing a significant gap in the existing 
literature. By using a comprehensive country-level analysis 
spanning two decades, inorganic fertilizers have been iden-
tified as the most significant input in reducing child stunt-
ing, chosen as a proxy for undernourishment. Per-capita 
agricultural land is the second input in terms of statistical 
significance, reaching it in all models estimated through sys-
tem GMM. Manure, pesticides and irrigation are never or 
almost never significant.

Clearly, the most immediate message seems to be the 
intensification of inorganic fertilizers use, particularly 
in countries with very low levels of current adoption. In 
such countries, in fact, there might be larger gains and 
the environmental impact should be minimal. Mechani-
zation, knowledge and land concentration are likely to be 
other factors helpful in reducing child stunting.

The lack of significance of the other agricultural inputs 
must be taken with caution rather than being interpreted 
as evidence of inconsequentiality. Irrigation, in particular, 
has been proxied by a somehow weak variable due to lack 
of data in better alternatives. The choice of the dependent 
variable may be an additional reason, since child stunt-
ing is a narrow subset of undernourishment and may 
be caused by additional factors other than alimentation 
alone. It has been chosen as a proxy for undernourish-
ment since this last is plagued by several imputed data, 
leading to possible bias. Since undernourishment is likely 
to be more directly impacted by agricultural production, 
the examined inputs may gain significance. This calls for 
better data regarding undernourishment in order to gain 
a broader picture compared to the one offered by this 
paper.

Appendix
See Fig. 2, Table 5.

3 Adopting the variable of actually irrigated land would have caused the 
elimination of several countries, particularly African, from the analysis for 
lack of information.
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Fig. 2 Correlation matrices of selected variables
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