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A B S T R A C T

Background: The EAT-Lancet diet was reported to be mutually beneficial for the human cardiometabolic system and planetary health. However,
mechanistic evidence linking the EAT-Lancet diet and human cardiometabolic health is lacking.
Objectives: We aimed to investigate the role of blood proteins in the association between the EAT-Lancet diet and cardiometabolic health and explore the
underlying gut microbiota–blood protein interplay.
Methods: Our study was based on a prospective cohort including 3742 Chinese participants enrolled from 2008–2013 with serum proteome data
repeatedly measured �3 times (Nproteome ¼ 7514) and 1195 with gut metagenomic data measured �2 times over 9 y (Nmicrobiota ¼ 1695). Least absolute
shrinkage and selection operator and multivariable linear regression were used to explore the associations of the EAT-Lancet diet (assessed by semi-
quantitative food frequency questionnaire) with serum proteins and gut microbes. Linear mixed-effect model and logistic regression were used to
examine the associations of selected proteins with 11 cardiometabolic risk factors and 4 cardiometabolic diseases, respectively. Mediation analysis was
used to identify potential mediation effects. Multiple comparisons were adjusted using the Benjamini-Hochberg method.
Results: The mean (standard deviation) age of enrolled participants was 58.4 (6.1) y (31.6% men). The EAT-Lancet diet was prospectively associated
with 4 core proteins, including α-2-macroglobulin (A2M) (pooled β: 0.12; 95% confidence interval [CI]: 0.05, 0.2), retinol-binding protein 4 (pooled β:
�0.14; 95% CI: �0.24, �0.04), TBC1 domain family member 31 (pooled β: �0.11; 95% CI: �0.22, 0), and adenylate kinase 4 (pooled β: �0.19; 95%
CI: �0.3, �0.08). The identified proteins were prospectively associated with cardiometabolic diseases (pooled odds ratio ranged from 0.8–1.18) and risk
factors (pooled β ranged from �0.1 to 0.12), mediating the association between the EAT-Lancet diet and blood triglycerides. We then identified 5 gut
microbial biomarkers of the EAT-Lancet diet, and discovered a potential gut microbiota–blood protein interplay (EAT-Lancet diet→Rothia mucilagi-
nosa→A2M) underlying the EAT-Lancet diet–cardiometabolic health association.
Conclusions: Our study presents key molecular evidence to support the role of EAT-Lancet diet adherence in promoting cardiometabolic health.
Abbreviations: A2M, α-2-macroglobulin; AK4, adenylate kinase 4; aMed, Alternate Mediterranean diet; BH, Benjamini-Hochberg; CI, confidence interval; DASH, Dietary
Approaches to Stop Hypertension; DBP, diastolic blood pressure; FDR, false discovery rate; FFQ, food frequency questionnaire; HbA1c, glycated hemoglobin; LASSO, least absolute
shrinkage and selection operator; MET, total metabolic equivalent of task; MetS, metabolic syndrome; MS, mass spectrometry; OR, odds ratio; PDI, plant-based diet index; RBP4,
retinol-binding protein 4; SBP, systolic blood pressure; T2D, type 2 diabetes; SWATH, sequential window acquisition of all theoretical mass spectra; TBC1D31, TBC1 domain family
member 31; TC, total cholesterol; TG, triglycerides.
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Introduction

The EAT-Lancet diet is a recently defined global healthy reference
dietary pattern promoting human health and environmental sustain-
ability [1–3]. This dietary pattern is characterized by emphasized in-
takes of fruits, vegetables, unsaturated fat, and nuts, and limited intakes
of dairy products, saturated fat, and animal-source foods. EAT-Lancet
diet adherence has been beneficially associated with cardiometabolic
diseases, including ischemic heart disease [4–6], diabetes [4,7–9],
stroke [10], and obesity [11]. While several physiological mechanisms
for EAT-Lancet diet components have been demonstrated, such as their
effects on established cardiovascular disease risk factors [12–14], the
biomarkers of the EAT-Lancet diet and the underlying mechanisms are
less clear.

The molecular mechanisms underlying the EAT-Lancet die-
t–cardiometabolic health association could potentially be unveiled
through multiomics integration analysis. Proteomics is a promising
approach for identifying the biomarkers of diets [15–18], providing a
functional link between habitual diets and cardiometabolic health.
Existing human studies linking diet and the blood proteome were
mainly based on cross-sectional data, and little is known about the
relationship between diet-related proteins and cardiometabolic diseases
[19–22]. Similarly, while several EAT-Lancet diet components have
been associated with the gut microbiome [13,23,24], whether and how
EAT-Lancet diet adherence may influence the gut microbiome has not
been fully elucidated [25]. Moreover, several recent human studies
demonstrated the contributions of the gut microbiome to blood proteins
involved in metabolism and inflammation [26,27], indicating the po-
tential existence of a gut microbiome–blood protein interplay. There-
fore, we hypothesized that blood proteins and gut microbes may be
involved in the pathway from the EAT-Lancet diet to cardiometabolic
health, which may help interpret the health benefit of this dietary
pattern.

In this study, our main aim was to investigate the longitudinal as-
sociations between the EAT-Lancet diet, serum proteome, and car-
diometabolic diseases and risk factors in a large prospective cohort of
Chinese middle-aged and elderly participants. Our secondary aim was
to examine the associations between the EAT-Lancet diet and gut
microbiota and explore the potential gut microbiota–blood protein
interplay underlying the association between the EAT-Lancet diet and
cardiometabolic health.

Methods

Study design and population
The overall study design is displayed in Figure 1. This study was

based on the Guangzhou Nutrition and Health Study, which consists of
4048 Chinese participants aged 40 to 75 y and living in the urban area of
Guangzhou, China, for�5 y. We recruited the participants between 2008
and 2013 and followed them every 3 y. Participants with dietary infor-
mation and without missing covariates were included in this study
(N ¼ 3991). Among them, 7620 fasting serum samples from 3796
participants were collected at baseline (2008–2013), the 2014–2017
follow-up visit, or the 2018–2019 follow-up visit. We excluded partic-
ipants with cancer at baseline (n ¼ 15) or extreme levels of dietary total
energy intake (<800 kcal or >4000 kcal for men; <500 kcal or >3500
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kcal for women) (n¼ 39), which resulted in 3742 participants with 7514
serum samples in our formal analysis. We further divided the study into
the discovery and validation sets because they were measured at different
time points with independent sample preparation, mass spectrometry
(MS) acquisition, and data preprocessing [28]. The discovery set
included 1897 participants with 4532 serum samples (baseline: 1745
samples; 2014–2017 follow-up visit: 1656 samples; 2018–2019
follow-up visit: 1131 samples); the validation set contained 1845 par-
ticipants with 2982 serum samples (baseline: 1589 samples; 2014–2017
follow-up visit: 845 samples; 2018–2019 follow-up visit: 548 samples).
The flowchart of study participants involved in proteomics analysis is
shown in Supplemental Figure 1.

Because some participants were lost to follow-up and some did not
provide stool samples during their stay at our study center, a total of
1844 stool samples from 1339 participants were available at the follow-
up visits (2014–2019). After excluding participants without dietary
information (n ¼ 126), antibiotics usage within 2 wk (n ¼ 8), or
extreme levels of dietary total energy intake (<800 kcal or >4000 kcal
for men; <500 kcal or >3500 kcal for women) (n ¼ 10), 1195 par-
ticipants with 1695 stool samples remained in this study (2014–2017
follow-up visit: 735 samples; 2018–2019 follow-up visit: 960 sam-
ples), of which 500 participants had paired stool samples and 695 had a
single stool sample. There were 1094 participants with both stool and
serum samples collected at the same time point, which were used for
the gut microbiome–blood proteome integration analysis.

Written informed consent was obtained from all enrolled partici-
pants prior to sample collection. This study was approved by the Ethics
Committee of the School of Public Health at Sun Yat-sen University
and Westlake University.

Dietary assessment and EAT-Lancet score calculation
We obtained the information on habitual dietary intake in the past 1

y based on a validated semi-quantitative food frequency questionnaire
(FFQ) with 79 food items at baseline (2008–2013) during face-to-face
questionnaire interviews [23,29,30]. We classified the food items into
14 dietary components: whole grains; tubers and starchy vegetables;
vegetables; fruits; dairy foods; beef, lamb, and pork; poultry; eggs; fish
and seafood; dry beans, lentils, peas; soy foods; nuts; added fats
(unsaturated/saturated fat ratio); and added sugars, which are the
components of the EAT-Lancet diet [1]. We then created the
EAT-Lancet score according to a prior study [4], which was based on
the references set by the EAT-Lancet Commission [1]. One point was
assigned to participants who adhered to the dietary components;
otherwise, no points were assigned (the scoring criteria are shown in
Supplemental Table 1). The EAT-Lancet score was calculated by
summing the points for individual components and ranged from
0 (nonadherence) to 14 (perfect adherence).

Measurement of cardiometabolic health and covariates
Fasting venous blood samples were collected at baseline and

follow-up visits. Insulin was measured by electrochemiluminescence
immunoassay using a Cobas 8000/e602 immunoanalyzer (Roche Di-
agnostics). Glycated hemoglobin (HbA1c) was measured by HPLC
using the Bole D-10 Hemoglobin A1c Program on a Bole D-10 He-
moglobin Testing System. Glucose, total cholesterol (TC), triglycerides
(TG), HDL cholesterol, and LDL cholesterol were measured by



FIGURE 1. Study design. To identify serum proteomic signature of the EAT-Lancet diet for promoting cardiometabolic health and investigate the gut
microbiota–blood protein interplay underlying the association between the EAT-Lancet diet and cardiometabolic health, we profiled serum proteomes and gut
microbiomes from the Guangzhou Nutrition and Health Study, which is an ongoing prospective cohort involving 4048 middle-aged and elderly Chinese
participants. Dietary information was collected at the baseline (2008–2013) using a FFQ. During the period 2008–2019, blood samples were collected at �3 time
points per individual, and stool samples were collected at �2 time points. We obtained serum proteomics data by data-independent acquisition mass spec-
trometry and gut metagenomic data by shotgun metagenomic sequencing. Participants with proteomics data were divided into the discovery and validation sets
based on the batch of sample preparation, mass spectrometry acquisition, and data preprocessing. Cardiometabolic risk factors including glucose homeostasis,
lipid metabolism, blood pressure, and BMI were measured using standard methods. Cardiometabolic diseases were defined by recognized standards. DBP,
diastolic blood pressure; HOMA-IR, homeostasis model assessment of insulin resistance; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipoprotein cholesterol; MetS, metabolic syndrome; SBP, systolic blood pressure; T2D, type 2 diabetes; TC, total cholesterol;
TG, triglycerides.
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colorimetric methods using a Cobas 8000 c702 automated analyzer
(Roche Diagnostics). HOMA-IR was calculated based on fasting insulin
and fasting glucose [31]. Systolic blood pressure (SBP) and diastolic
blood pressure (DBP) were measured using an arm digital sphygmo-
manometer (HEM-7011, OMRON Corporation). Anthropometric pa-
rameters, including height and weight, were measured by trained nurses
on site, and BMI was calculated as weight in kilograms divided by height
in meters squared.

Type 2 diabetes (T2D) was defined as fasting glucose�7.0 mmol/L
(126 mg/dL), HbA1c �6.5% (48 mmol/mol), or self-reported use of
medications for T2D [32]. Hypertension was diagnosed as SBP �140
mmHg, DBP �90 mmHg, or current antihypertensive medication use
3

[33]. Dyslipidemia was based on TC �6.2 mmol/L, TG �2.3 mmol/L,
LDL cholesterol �4.1 mmol/L, HDL cholesterol <1.0 mmol/L, or
lipid-lowing drug intake [34]. Participants diagnosed as metabolic
syndrome (MetS) met 3 of the 5 following criteria: 1) waist circum-
ference >90 cm (male) or >85 cm (female); 2) fasting glucose �6.1
mmol/L (110 mg/dL) or previously diagnosed with T2D; 3) TG �1.7
mmol/L (150 mg/dL); 4) HDL cholesterol <1.04 mmol/L (40 mg/dL);
and 5) SBP/DBP �130/85 mmHg or previously diagnosed with hy-
pertension [34].

Sociodemographic information was collected using a structured
questionnaire during face-to-face interviews. The factors included age
(y), sex (male or female), education (middle school or lower, high
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school or professional college, or university), income (low, middle, or
high), lifestyle factors (smoking status [current smoker or noncurrent
smoker], alcohol status [current alcohol drinker or noncurrent alcohol
drinker], and physical activity [total metabolic equivalent of task
{MET}]), health status (T2D status [yes or no] and hypertension status
[yes or no]), and medication usage (dyslipidemia medication usage [yes
or no]). Physical activity was assessed as MET-h/d based on a validated
physical activity questionnaire with 19 items [35].

Serum proteomics profiling and preprocessing
Blood samples from enrolled participants were collected on site on

the examination day after overnight fasting, temporarily stored on ice,
and then transported to the research laboratory. Serum was prepared
using a standardized protocol and stored at �80�C in 0.5 mL aliquots
within 4 h. Detailed information on peptide extraction, MS analysis,
MS data preprocessing, quality control, and missing value imputation
(missing value patterns are shown in Supplemental Figure 2) can be
found in our recently published article [28] and the Supplementary
Materials. The peptides were analyzed by sequential window acquisi-
tion of all theoretical mass spectra (SWATH)-MS using a TripleTOF
5600 system (SCIEX) coupled to a NanoLC 400 System (Eksigent)
[36] and then analyzed using DIA-NN (1.8) software against a serum
spectral library from the Homo sapiens Swiss-Prot database [36,37].
Samples in the discovery set were analyzed by SWATH-MS at 3 time
points (1323, 1779, and 1430 samples, respectively; hereafter called
inner sequencing batch). We obtained 411 proteins that overlapped
between the discovery and validation sets for formal analysis.

Shotgun metagenomic sequencing and preprocessing
Stool samples were collected from each participant on site on the

examination day, temporarily stored on ice, and then transported to the
research laboratory and stored at �80�C within 4 h. Detailed infor-
mation on microbial DNA isolation, shotgun metagenome sequencing,
and bioinformatics processing of the raw metagenomic data can be
found in our published articles [38–40] and the Supplementary Mate-
rials. We included 152 bacterial species with a minimum detectable
relative abundance of 0.01% in �10% of the samples. The relative
abundance of the genome data for specific microbial species was
extracted from the stratified gene family data of the metagenomic
samples obtained by HUMAnN2 (version 2.8.1) with default settings
[41], which was based on the UniRef database [42]. We only included
microbial genes that were detected in >10% of samples for analysis.
We performed centered log-ratio transformation (zero values were
replaced with 1�10�5 for species data and 1�10�9 for gene family
data) and z-score normalization (zero-mean and unit-variance) for the
relative abundance of microbial species and gene family data.

Statistical analysis
To evaluate the differences between the EAT-Lancet score and other

standard diet quality scores, we assessed Spearman correlations of the
EAT-Lancet score with the Dietary Approaches to Stop Hypertension
(DASH) score [43,44], Alternate Mediterranean diet (aMed) score [45],
and plant-based diet index (PDI) [46]. We categorized the EAT-Lancet
score into 3 groups based on tertiles (highest tertile: 11–14; middle
tertile: 10; lowest tertile: 1–9). In the discovery set, we used a 2-step
strategy to select EAT-Lancet diet-related serum proteins. First, we
used least absolute shrinkage and selection operator (LASSO) regres-
sion to identify the proteins associated with the baseline EAT-Lancet
score, in which only follow-up proteomics data were included and
transformed into z-scores. For participants with follow-up proteomics
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data measured at both 2014–2017 and 2018–2019 visits (993 partici-
pants), we only included the proteomics data from the 2018–2019
follow-up visit in the LASSO regression to capture the long-term ef-
fects of the EAT-Lancet diet on serum proteins. LASSO regression was
implemented using R package glmnet (version 4.1-3) with the binomial
link function for binary dependent variables (highest tertile/lowest
tertile of the EAT-Lancet score) [47]. In the second step of our strategy,
we further evaluated the prospective associations between baseline
EAT-Lancet score (highest compared with lowest tertile) and future
protein levels identified in the first step using multivariable linear
regression in the discovery set, adjusted for potential covariates
including age, sex, BMI, smoking status, alcohol status, education,
income, physical activity, total energy intake, T2D status, hypertension
status, dyslipidemia medication usage, time interval, inner sequencing
batch, and corresponding baseline protein abundance. Similar to
LASSO regression, only the follow-up proteomics data from the
2018–2019 visit were included in multivariable linear regression for
participants with proteomics data measured at both the 2014–2017 and
2018–2019 follow-up visits. Proteins with skewed distribution were
log-transformed, and all proteins were standardized into z-scores. We
then used the same models to assess the linear trends of the above
associations based on per-tertile difference in the EAT-Lancet score.
We used the Benjamini-Hochberg (BH) method to control for the false
discovery rate (FDR) caused by multiple testing.

Subsequently, we constructed the Lancet-protein index using the
unweighted method (only regression coefficient direction was used due
to its robustness to different datasets) based on the proteins identified in
the above multivariable linear regression to capture the overall effect of
the EAT-Lancet diet on serum proteins. We used the following formula
to calculate the Lancet-protein index: Lancet-protein index¼
P� normalized abundance of proteomic biomarkers, where � signs
depended on the signs of regression coefficients in multivariable linear
regression, and the abundances of proteins and Lancet-protein index
were normalized into z-scores. To test the reliability of the Lancet-
protein index, we used multivariable linear regression to examine the
association between baseline EAT-Lancet score (highest compared
with lowest tertile) and future Lancet-protein index, adjusted for the
same covariates as the above analysis of individual proteins except for
the corresponding baseline Lancet-protein index. Linear trend analysis
was performed for the above association using the same model based
on per-tertile difference in the EAT-Lancet score. We examined the
potential interactions of baseline EAT-Lancet score (highest compared
with lowest tertile) with age (�60 y compared with <60 y) and sex on
levels of the identified proteins at follow-up and Lancet-protein index
and performed subgroup analysis if there were significant interactions
(FDRinteraction < 0.05).

We further performed sensitivity analysis for the associations of
baseline EAT-Lancet score (highest compared with lowest tertile) with
follow-up levels of the identified proteins and Lancet-protein index
using a linear mixed-effect model including all repeated-measured
proteomics data and accounting for within-person correlation, adjust-
ing for the same covariates as above, wherein the corresponding
baseline protein abundance or Lancet-protein index was adjusted. A
linear trend test was also performed using a linear mixed-effect model
based on per-tertile difference in the EAT-Lancet score. The linear
mixed-effect model was implemented using the R package lme4
(version 1.1-27.1) [48].

We then explored the associations of EAT-Lancet diet-related pro-
teins and Lancet-protein index with cardiometabolic risk factors
(fasting glucose, fasting insulin, HOMA-IR, HbA1c, TC, TG, HDL
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cholesterol, LDL cholesterol, SBP, DBP, and BMI) using a linear
mixed-effect model accounting for serial measures and within-person
correlation, adjusted for age, sex, BMI, smoking status, alcohol sta-
tus, education, income, physical activity, total energy intake, and inner
sequencing batch (BMI was not adjusted when it served as the
dependent variable) among all participants with proteomics data. The
concentrations of fasting glucose, fasting insulin, HOMA-IR, and TG
were log-transformed. We also investigated the associations of baseline
EAT-Lancet diet-related proteins and Lancet-protein index with follow-
up cardiometabolic disease incidence (T2D, hypertension, MetS, and
dyslipidemia) using logistic regression, adjusted for the same cova-
riates as the above analysis. In this analysis, participants with car-
diometabolic diseases diagnosed at the baseline were removed.
Multiple comparisons were controlled for using the BH method across
the full set of outcomes and separately for cardiometabolic risk factors
and diseases. We examined the potential interactions of EAT-Lancet
diet-related proteins and Lancet-protein index with age (�60 y
compared with <60 y) and sex on cardiometabolic risk factors and
diseases and performed subgroup analysis if significant interactions
(FDRinteraction < 0.05) existed. The abundance of EAT-Lancet diet-
related proteins, Lancet-protein index, and cardiometabolic risk factors
were standardized into z-scores.

Furthermore, we performed mediation analysis to evaluate whether
proteins and Lancet-protein index could mediate the associations be-
tween the EAT-Lancet diet and cardiometabolic health. To ensure
temporal ordering of exposure, mediator, and outcome, the baseline
EAT-Lancet score (highest compared with lowest tertile) served as the
exposure, proteins and Lancet-protein index measured at the
2014–2017 follow-up visit served as the mediators, and car-
diometabolic risk factors measured at the 2018–2019 follow-up visit
served as the outcomes. Because there were few incident car-
diometabolic diseases at the 2018–2019 follow-up visit (the incident
cases for T2D, hypertension, MetS, and dyslipidemia were 90, 56, 85,
and 58, respectively, in the discovery set and 10, 10, 6, and 8,
respectively, in the validation set), the mediation analysis for car-
diometabolic diseases was not performed. Mediation analysis were
conducted using R package mediation (version 4.5.0) [49].
TABLE 1
Baseline characteristics of study participants based on the EAT-Lancet score.

All (N ¼ 3751) Lower tertile (N ¼
Age, y 58.4 (6.1) 58.3 (6.1)
Male, n (%) 1184 (31.6) 586 (31.5)
BMI, kg/m2 23.3 (3.1) 23.3 (3.1)
Current smoker, n (%) 620 (16.5) 334 (18.0)
Current alcohol drinker, n (%) 260 (6.9) 139 (7.5)
Education, n (%)
Middle school or lower 1134 (30.2) 538 (28.9)
High school or professional college 1689 (45.0) 848 (45.6)
University 928 (24.7) 473 (25.4)

Income level, n (%)
Low (�1500 ¥/month) 1033 (27.5) 527 (28.3)
Middle (1501–3000 ¥/month) 2163 (57.7) 1054 (56.7)
High (>3000 ¥/month) 555 (14.8) 278 (15.0)

Physical activity, MET 41.1 (14.8) 40.6 (14.4)
Total energy intake, kcal/d 1765.0 (508.3) 1757.4 (501.2)
Type 2 diabetes, n (%) 197 (5.3) 93 (5.0)
Hypertension, n (%) 1072 (28.6) 522 (28.1)
Dyslipidemia, n (%) 1730 (46.1) 839 (45.1)
Metabolic syndrome, n (%) 584 (15.6) 280 (15.1)

Data are presented as mean (standard deviation) for continuous variables or n (%
Abbreviation: MET, metabolic equivalent of task.
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The results from the above analyses were replicated in the valida-
tion set. The effect estimates from the discovery and validation sets
were pooled by fixed-effect meta-analysis using the R package metafor
(version 3.0-2) [50,51].

We then explored the potential gut microbiota–blood protein
interplay underlying the EAT-Lancet diet–cardiometabolic health as-
sociation. Detailed statistical analyses for the investigation of the gut
microbiota–blood protein interplay can be found in the Supplemental
Methods. Briefly, we used the same 2-step strategy mentioned above
(LASSO regression and multivariable linear regression) to identify gut
microbes associated with the EAT-Lancet diet. Then, we used multi-
variable linear regression to assess the cross-sectional associations
between the identified gut microbes and serum proteins. Among the
identified gut microbe–blood protein associations, we investigated
whether gut microbes could mediate the associations between the EAT-
Lancet diet and serum proteins using mediation analysis. For identified
microbial species that may mediate the EAT-Lancet diet-protein asso-
ciations, we further investigated the specific genes of the species that
may link the EAT-Lancet diet and serum proteins. We used the
abovementioned 2-step strategy (LASSO regression and multivariable
linear regression) to select EAT-Lancet diet-related microbial genes.
The associations between the identified EAT-Lancet diet-related genes
and serum proteins were examined by multivariable linear regression.

In the above multivariable linear regression and linear mixed-effect
model analyses, the normality and homoscedasticity assumptions were
assessed using the normal quantile plot of the residuals and the scat-
terplot of residuals compared with predicted values, respectively, and
there were no violations of normality and homoscedasticity assump-
tions in our analyses.

All statistical analyses were performed using R software (version R-
4.1.1). FDR< 0.05 or P< 0.05 was considered statistically significant.
Results

Participant characteristics
The mean (SD) age of our study participants was 58.4 (6.1) years

(31.6%men) at enrollment (Table 1).Higher adherence to theEAT-Lancet
1859) Middle tertile (N ¼ 1173) Upper tertile (N ¼ 719) P

58.5 (6.0) 58.5 (6.1) 0.483
378 (32.2) 220 (30.6) 0.760
23.3 (3.0) 23.5 (3.1) 0.243
180 (15.3) 106 (14.7) 0.060
71 (6.1) 50 (7.0) 0.323

0.135
387 (33.0) 209 (29.1)
503 (42.9) 338 (47.0)
283 (24.1) 172 (23.9)

0.598
324 (27.6) 182 (25.3)
678 (57.8) 431 (59.9)
171 (14.6) 106 (14.7)
41.7 (15.5) 41.4 (14.4) 0.098
1741.3 (485.4) 1823.1 (557.0) 0.002
69 (5.9) 35 (4.9) 0.501
338 (28.8) 212 (29.5) 0.760
558 (47.6) 333 (46.3) 0.420
198 (16.9) 106 (14.7) 0.321

) for categorical variables.



FIGURE 2. Prospective associations between the EAT-Lancet diet and serum proteins. (A) Associations between EAT-Lancet score and serum proteins based on
LASSO regression in the discovery set. (B) Prospective associations between EAT-Lancet score and serum proteins based onmultivariable linear regression, adjusted for
potential confounders (baseline protein abundances were included as confounders) in the discovery set. In A–B, the analyses were based on 1060 participants in the
discovery set (Nhighest tertile¼ 302; Nlowest tertile¼ 758). (C) Results of meta-analysis for the prospective associations of EAT-Lancet score with identified serum proteins
and Lancet-protein index from the discovery and validation sets. The associations were estimated by multivariable linear regression in the discovery and validation sets,
adjusted for potential confounders (baseline protein abundances or Lancet-protein index were included as confounders). Fixed-effect meta-analysis was used to integrate
the results from the discovery and validation sets. The analyses conducted in the validation set were based on 537 participants (Nhighest tertile¼ 153;Nlowest tertile¼ 384). (D)
Sensitivity analysis by linearmixed-effectmodel including all repeated-measured proteomics data for the associations of EAT-Lancet scorewith identified serumproteins
and Lancet-protein index in the discovery and validation sets, adjusted for potential confounders (baseline protein abundances or Lancet-protein index were included as
confounders). Fixed-effect meta-analysis was used to integrate the results from the discovery and validation sets. The analyses were based on 1734 (Nhighest tertile¼ 485;
Nlowest tertile¼ 1,249) and 739 (Nhighest tertile¼ 217;Nlowest tertile¼ 522) serialmeasures of proteomics data in the discovery and validation set, respectively. All proteins and
Lancet-protein index were transformed into z-scores. CI, confidence interval; FDR, false discovery rate; LASSO, least absolute shrinkage and selection operator.
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diet (measured by EAT-Lancet score) was positively associated with
beneficial components of the EAT-Lancet diet, including fruits, nuts, and
added fats (higher unsaturated/saturated fat ratio) and negatively associ-
atedwith animal-based foods, soy foods, and added sugars (Supplemental
Table 2, Supplemental Figure 3). There were generally moderate corre-
lations among the components of the EAT-Lancet diet (from �0.41 to
0.26; Supplemental Figure 3). EAT-Lancet score was modestly correlated
withDASHscore (r¼ 0.16,P< 0.001) andPDI (r¼ 0.18,P< 0.001) but
not correlatedwith aMed score (r¼ 0.03,P¼ 0.155). Frombaseline to the
2014–2017 follow-up visit (583 participants with dietary information at
both time points), most participants had stable adherence to the EAT-
Lancet diet, with 73.8% having EAT-Lancet score changes within 1
point and 92.5% having EAT-Lancet score changes within 2 points. From
7

baseline to the 2018–2019 follow-up visit (950 participants with dietary
information at both time points), EAT-Lancet diet adherence was still
stable,with 64.2%ofEAT-Lancet score changeswithin 1 point and 89.7%
of EAT-Lancet score changes within 2 points.

Adherence to the EAT-Lancet diet was prospectively
associated with specific serum proteins

In the discovery set, we identified 4 proteins that were associated with
the baseline EAT-Lancet score, with α-2-macroglobulin (A2M) level
being significantly higher and retinol-binding protein 4 (RBP4), TBC1
domain family member 31 (TBC1D31) and adenylate kinase 4 (AK4)
levels being significantly lower in the highest tertile of EAT-Lancet score
compared with the lowest tertile of EAT-Lancet score (FDR < 0.05;
(caption on next page)
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Figure 2A, B). Higher EAT-Lancet scores were prospectively associated
with higher levels of Lancet-protein index (constructed based on the 4
identified EAT-Lancet diet-related proteins; see Methods) (β: 0.34; 95%
confidence interval [CI]: 0.22, 0.47; P < 0.001) (Figure 2C). Linear
trend analyses showed consistent results (Supplemental Figure 4). We
did not find significant interactions of EAT-Lancet diet adherence with
age (�60 y compared with <60 y) or sex on the levels of the identified
proteins or the Lancet-protein index (all FDRinteraction >0.05).

We further replicated the above-identified associations in the vali-
dation set (Figure 2C) and found significant associations between the
baseline EAT-Lancet score (highest compared with lowest tertile) and
follow-up levels of AK4 (β:�0.23; 95% CI:�0.42,�0.04: P¼ 0.017)
and A2M (β: 0.14; 95% CI: �0.01, 0.28; P ¼ 0.063) and the Lancet-
protein index (β: 0.18; 95% CI: 0, 0.36; P ¼ 0.056). The results of
meta-analysis from the discovery and validation sets showed that
adherence to the EAT-Lancet diet was significantly associated with
higher levels of A2M (pooled β: 0.12; 95% CI: 0.05, 0.20) and Lancet-
protein index (pooled β: 0.29; 95% CI: 0.19, 0.39) and lower levels of
AK4 (pooled β: �0.19; 95% CI: �0.30, �0.08) (Figure 2C). Linear
trend tests showed similar results to the above associations (Supple-
mentary Figure 4).

Sensitivity analysis by linear mixed-effect model including all
repeated-measured proteomics data showed similar results, and the
associations of baseline EAT-Lancet score (highest compared with
lowest tertile) with future AK4 (β: �0.2; 95% CI: �0.35, �0.03; P ¼
0.019) and A2M levels (β: 0.16; 95% CI: 0.03, 0.3; P ¼ 0.021) and
Lancet-protein index (β: 0.2; 95% CI: 0.03, 0.36; P ¼ 0.019) were
significant in the validation set (Figure 2D). Similar results were found
in linear trend analyses (Supplementary Figure 4).

Serum proteomic biomarkers of the EAT-Lancet diet were
associated with cardiometabolic health

A2M, which was positively associated with the EAT-Lancet diet,
was beneficially associated with many cardiometabolic risk factors,
such as HbA1c, TC, TG, HDL cholesterol, LDL cholesterol, SBP, DBP,
and BMI (FDR < 0.05; Figure 3A and Supplemental Figure 5A, B).
Similarly, both TBC1D31 and RBP4 were associated with several
cardiometabolic risk factors (FDR < 0.05; Figure 3A and Supple-
mentary Figure 5A, B). Additionally, the Lancet-protein index was
positively associated with HDL cholesterol and negatively associated
with fasting glucose, fasting insulin, HOMA-IR, TC, TG, SBP, DBP,
FIGURE 3. Associations of EAT-Lancet diet-related proteinswith cardiometabolic h
proteins and Lancet-protein index with cardiometabolic risk factors from the discover
adjusted for potential confounders. The concentrations of fasting glucose, fasting insu
validation setswere based on 4459 and2788 serialmeasures of fasting glucose, 1699 an
IR, 2740 and1046 serialmeasures ofHbA1c, 4137 and2305 serialmeasures of total ch
HDL cholesterol, 4460 and 2614 serialmeasures of LDL cholesterol, 4530 and 2843 s
serialmeasures ofBMI, respectively. (B) Results ofmeta-analysis for the prospective a
with incident cardiometabolic diseases from the discovery andvalidation sets. The asso
Participants with cardiometabolic diseases diagnosed at baseline were excluded in th
discovery and validation sets. The analyses in the discovery and validation sets were b
T2D, 1234 (incident cases: 403) and 1133 (incident cases: 225) participants for hypert
MetS, and 900 (incident cases: 523) and 887 (incident cases: 327) participants for dy
association between EAT-Lancet score and TG in the discovery set (N¼ 855). (D) M
andTG in thediscovery set (N¼ 855). (E)Mediation effect ofRBP4on the prospective
Mediation effect of A2M on the prospective association between EAT-Lancet score an
by mediation analysis. The abundance of EAT-Lancet diet-related proteins, Lancet-p
ACME, average causalmediation effects; ADE, average direct effects; DBP, diastolic b
high-density lipoprotein cholesterol; HOMA-IR, homeostasis model assessment of i
syndrome; OR, odds ratio; SBP, systolic blood pressure; T2D, type 2 diabetes; TC, t
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and BMI (FDR < 0.05; Figure 3A and Supplementary Figure 5C). We
did not observe significant interactions of EAT-Lancet diet-related
proteins or Lancet-protein index with age (�60 y compared with <60
y) or sex on any cardiometabolic traits (all FDRinteraction > 0.05).

For incident cardiometabolic diseases, 1 SD increase in A2M was
associated with 20% lower risk of T2D (pooled odds ratio [OR]: 0.8;
95% CI: 0.69, 0.92), 12% lower risk of hypertension (pooled OR: 0.88;
95% CI: 0.79, 0.98), and 18% lower risk of MetS (pooled OR: 0.82;
95% CI: 0.73, 0.92) (FDR < 0.05; Figure 3B and Supplemental
Figure 6A). One SD increase in RBP4 was associated with 15% higher
risk of hypertension (pooled OR: 1.15; 95% CI: 1.04, 1.28) and 18%
higher risk of MetS (pooled OR: 1.18; 95% CI: 1.05, 1.31) (FDR <

0.05; Figure 3B and Supplementary Figure 6A). Finally, 1 SD increase
in Lancet-protein index was associated with 16% lower risk of T2D
(pooled OR: 0.84; 95% CI: 0.74, 0.96) and 14% lower risk of MetS
(pooled OR: 0.86; 95% CI: 0.77, 0.96) (FDR < 0.05; Figure 3B and
Supplementary Figure 6B). No significant interactions were observed
for EAT-Lancet diet-related proteins or Lancet-protein index with age
(�60 y compared with <60 y) or sex on any cardiometabolic diseases
(all FDRinteraction > 0.05).
Serum proteins mediated the association between the
EAT-Lancet diet and blood TG

The results of mediation analysis showed that the Lancet-protein
index (22.97%, P ¼ 0.006, Figure 3C in the discovery set), A2M
level (7.47%, P ¼ 0.026, Figure 3D in the discovery set; 35.31%, P ¼
0.02, Figure 3F in the validation set), and RBP4 level (12.68%, P ¼
0.028, Figure 3E in the discovery set) could mediate the association
between baseline EAT-Lancet score and future TG level.
Potential role of gut microbiota in linking the EAT-Lancet
diet and its related serum proteins

We identified Rothia mucilaginosa and Streptococcus sanguinis as
positively associated with the baseline EAT-Lancet score and Bacter-
oides faecis, Ruminococcus torques, and Anaerostipes hadrus as
negatively associated with the baseline EAT-Lancet score (FDR <

0.05; Figure 4A, B). We did not find significant interactions of EAT-
Lancet score with age (�60 y compared with <60 y) or sex on
selected gut microbes (all FDRinteraction > 0.05). Sensitivity analysis by
linear mixed-effect model also showed that the EAT-Lancet score was
ealth. (A) Results ofmeta-analysis for the associations of EAT-Lancet diet-related
y and validation sets. Associations were estimated by linear mixed-effect models,
lin, HOMA-IR, and TGwere log-transformed. The analyses in the discovery and
d 478 serialmeasures of fasting insulin, 1698 and478 serialmeasures ofHOMA-
olesterol, 4460 and2744 serialmeasures of TG, 4460 and 2614 serialmeasures of
erial measures of SBP, 4530 and 2843 serial measures ofDBP, and 4531 and 2843
ssociations of baseline EAT-Lancet diet-related proteins and Lancet-protein index
ciationswere estimated by logistic regression, adjusted for potential confounders.
is analysis. Fixed-effect meta-analysis was used to integrate the results from the
ased on 1670 (incident cases: 331) and 1494 (incident cases: 27) participants for
ension, 1458 (incident cases: 428) and 1352 (incident cases: 113) participants for
slipidemia. (C) Mediation effect of the Lancet-protein index on the prospective
ediation effect of A2M on the prospective association between EAT-Lancet score
association betweenEAT-Lancet score andTG in the discovery set (N¼ 855). (F)
d TG in the validation set (N¼ 186). The potential mediation effect was detected
rotein index, and cardiometabolic risk factors were standardized into z-scores.
lood pressure; FDR, false discovery rate; HbA1c, glycated hemoglobin;HDL-C,
nsulin resistance; LDL-C, low-density lipoprotein cholesterol; MetS, metabolic
otal cholesterol; TG, triglycerides.
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positively associated with R. mucilaginosa (β: 0.15; 95% CI: 0.02,
0.28; P ¼ 0.027) and negatively associated with B. faecis (β: �0.17
95% CI: �0.31, �0.03], P¼0.018; Supplemental Figure 7). The
prevalences of B. faecis, A. hadrus, S. sanguinis, and R. mucilaginosa
were significantly different between the highest and lowest tertiles of
EAT-Lancet score (P < 0.05; Supplemental Figure 8).

We also found that R. mucilaginosa was positively associated with
A2M level (β: 0.09; 95% CI: 0.03, 0.15), and A. hadrus was positively
9

associated with RBP4 level (β: 0.08; 95% CI: 0.03, 0.14) (FDR < 0.05;
Figure 4C). The distributions ofA2MandRBP4were significantly higher
in carriers of R. mucilaginosa andA. hadrus than in noncarriers of these 2
species, respectively (P< 0.05; Supplemental Figure 9). For EAT-Lancet
diet–R. mucilaginosa–A2M and EAT-Lancet diet–A. hadrus–RBP4 as-
sociations, the results of mediation analysis showed that R. mucilaginosa
may mediate the association between the EAT-Lancet score and A2M
level (11.91%, FDR ¼ 0.012; Figure 4D).
(caption on next page)
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We then explored specific genes (2312 in total) of the microbe
R. mucilaginosa that may play roles in the association between the EAT-
Lancet diet and serum A2M. Adherence to the EAT-Lancet diet was
associated with lower expression of G5EPI8 (β: �0.29; 95% CI: �0.44,
�0.14) and C6R1W3 (β: �0.25; 95% CI: �0.4, �0.1), and higher
expression of D2NPW9 (β: 0.27; 95% CI: 0.12, 0.42) and D2NQ60 (β:
0.28; 95% CI: 0.12, 0.43) in this microbe (FDR < 0.05; Figure 4E, F).
Prevalence of D2NPW9 and D2NQ60 was higher in participants in the
highest tertile of the EAT-Lancet score than those in the lowest tertile of
the EAT-Lancet score (P < 0.001; Supplemental Figure 10). Among
them,D2NQ60was positively associated with serum protein A2M (FDR
< 0.05; Figure 4G), and A2M levels were significantly higher in carriers
of D2NQ60 than in the noncarriers of D2NQ60 (FDR ¼ 0.008;
Figure 4H). Thus, these data suggest that gene D2NQ60 in
R. mucilaginosa may play an important role in linking the association
between the EAT-Lancet diet and serum protein A2M level.

Discussion

In this large-scale prospective cohort study, we identified serum
proteomic biomarkers of the EAT-Lancet diet that were associated with
cardiometabolic diseases and risk factors and may mediate the asso-
ciation between the EAT-Lancet diet and TG level. In addition, we
identified gut microbial biomarkers of the EAT-Lancet diet and
discovered a potential gut microbiota–blood protein interplay (EAT-
Lancet diet→R. mucilaginosa→A2M association) underlying the EAT-
Lancet diet–cardiometabolic health association.

A healthy dietary pattern is essential for human health. We showed
that the EAT-Lancet score was only moderately correlated with stan-
dard diet quality scores (e.g., DASH score, PDI, and aMed scores; r <
0.2). The EAT-Lancet score differs from other standard diet scores in
that it considers the dimensions of both environmental sustainability
and human health in its scoring system. Thus, the EAT-Lancet diet
emphasizes the intake of whole grains, vegetables, fruits, nuts, and
unsaturated oils, consists of a low to moderate intake of fish and sea-
food and poultry, and considerably limits the intake of red meats, added
sugars, and tubers and starchy vegetables [1]. To our knowledge, our
study was the first to investigate multiomics biomarkers (serum pro-
teins and gut microbes) of the EAT-Lancet diet and their relationship
with cardiometabolic health. Unlike previous studies identifying bio-
markers of dietary patterns based on cross-sectional data [22,52,53], we
explored the prospective associations between the EAT-Lancet diet and
serum proteome, providing high-level causal evidence for EAT-Lancet
diet-protein associations.
FIGURE 4. Role of gut microbiota in linking the associations between the EAT-
and gut microbes based on LASSO regression. (B) Associations between EAT-Lan
for potential confounders. In A–B, the analyses were based on 821 participants in t
associations between EAT-Lancet diet-related gut microbes and serum proteins bas
1094). (D) Mediation effect of Rothia mucilaginosa on the association between EA
EAT-Lancet score and genes in R. mucilaginosa based on LASSO regression. (F)
on multivariable linear regression, adjusted for potential confounders. In E–F, the
238; Nlowest tertile ¼ 583). (G) Cross-sectional associations between EAT-Lance
regression, adjusted for potential confounders (N ¼ 1094). (H) Distributions of s
identified microbial genes of R. mucilaginosa (N ¼ 1094). The residuals of serum A
confounders. Differences in standardized residuals (z-scores) of serum A2M betw
test. In the above analyses, the relative abundances of gut microbiota data and geno
and proteins were transformed into z-scores. ACME, average causal mediation effe
rate; LASSO, least absolute shrinkage and selection operator.
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The protein A2M, as a protease inhibitor and cytokine transporter,
could inhibit inflammatory cytokines [54]. A2M might play a medi-
ating role in the association between nutritional status and disease
prevention in the Thai population [55]. Another study found that A2M
was downregulated in rats fed a high-fat diet (60% kcal fat, 20% kcal
carbohydrate, and 20% kcal protein) compared with rats fed a normal
feed pellets diet [56,57]. These studies provided preliminary evidence
for the positive association between a healthy diet and A2M, consistent
with our results. As a broad-spectrum protease inhibitor, A2M can
remove 500 types of toxins (proteases) that are the main cause of many
complex diseases and plays a role in anti-aging mechanisms [58,59].
Studies have also shown that A2M can inhibit inflammatory pathways
involving IL-1β and NF-κB [54,60]. Our study supported evidence that
A2M is beneficially associated with human cardiometabolic health and
may mediate the association of the EAT-Lancet diet with blood lipids.

RBP4, an adipokine, has been reported to be positively associated
with obesity, insulin resistance, T2D, MetS, and dyslipidemia [61–63],
consistent with our findings. Several other studies demonstrated that
diet-induced weight loss, bariatric surgery, or exercise decrease RBP4
levels [64–66]. Yang et al. [61] suggested that lowering RBP4 levels
could be a new strategy for treating T2D. Our study showed that the
EAT-Lancet diet adherence was associated with a lower level of RBP4,
which may be a promising dietary intervention target for improving
cardiometabolic health.

The gut microbiome exerts its role in the physiological effects of diet
[67]. We showed that R. mucilaginosa may mediate the association
between the EAT-Lancet diet and A2M level. R. mucilaginosa, an
anti-inflammatory bacterium, is inversely associated with proin-
flammatory makers IL-8 and IL-1β by inhibiting the NF-κB pathway
[68], the same pathway through which A2M plays its anti-inflammatory
role [54]. Therefore, we speculate that R. mucilaginosa and A2M may
jointly modulate the association between the EAT-Lancet diet and car-
diometabolic health through inflammatory pathways.D2NQ60, a gene in
R. mucilaginosa, was positively associated with both the EAT-Lancet
diet and A2M. D2NQ60, namely superoxide dismutase, may regulate
oxidative stress, lipid metabolism, and inflammation [69–72]. The mi-
crobial gene D2NQ60 in R. mucilaginosa may serve as a target to
modulate A2M and improve cardiometabolic health.

Our study has some limitations. First, as this study was had an
observational study design,we cannot fully avoid the influence of residual
confounders on our results, although we have adjusted for several
important confounding factors in our analyses. Second, because matched
proteomics and gut microbiome data are rare in the field at this stage, we
did not have other datasets to validate the R. mucilaginosa–A2M asso-
ciation. However, our proposed gut microbiota–blood protein interplay
Lancet diet and serum proteins. (A) Associations between EAT-Lancet score
cet score and gut microbes based on multivariable linear regression, adjusted
he discovery set (Nhighest tertile ¼ 238; Nlowest tertile ¼ 583). (C) Cross-sectional
ed on multivariable linear regression, adjusted for potential confounders (N ¼
T-Lancet score and serum protein A2M (N ¼ 750). (E) Associations between
Associations between EAT-Lancet score and genes in R. mucilaginosa based
analyses were based on 821 participants in the discovery set (Nhighest tertile ¼
t diet-related genes and serum protein A2M based on multivariable linear
tandardized residuals of serum A2M between the carriers and noncarriers of
2M were obtained using multivariable linear regression adjusted for potential
een the carriers and noncarriers of genes were tested by Wilcoxon rank-sum
me data were centered log-ratio transformed. The data of gut microbes, genes,
cts; ADE, average direct effects; CI, confidence interval; FDR, false discovery
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provides an importantmechanistic hypothesis underlying the EAT-Lancet
diet–cardiometabolic health association, warranting future validations in
other large prospective cohort studies or experimental studies. Third, our
cohort only surveyed antibiotics use within 2 wk at the time of stool
sample collection, and it may take longer to reconstitute the gut micro-
biome after antibiotics treatment. Meanwhile, our cohort only included
middle-aged and elderly Chinese adults living in urban Guangzhou,
China. The generalizability of our findings on serum proteins and gut
microbes should be further validated in external large cohorts of racially
and geographically diverse populations surveyed for long-term antibi-
otics use (>2 mo). Finally, given the dietary assessment in this study was
based on self-reported FFQswith a relatively small number of food items,
which is prone to recall and social desirability bias, the EAT-Lancet score
constructed based on cutoff points of absolute amounts of dietary com-
ponents may have non-negligible measurement errors.

In summary, we identified serum proteins underlying the beneficial
association of the EAT-Lancet diet with cardiometabolic health based on a
longitudinal human cohort. Additionally, we identified gut microbial
biomarkers of the EAT-Lancet diet, and proposed a potential gut micro-
biota–blood protein interplay (EAT-Lancet diet→R.mucilaginosa→A2M
association) that may link the EAT-Lancet diet and cardiometabolic
health. The identified biomarkersmay serve as dietary intervention targets
for reducing the risk of cardiometabolic disorders in the future.
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