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Abstract 

Background  Although emerging evidence suggests that indole derivatives, microbial metabolites of tryptophan, 
may improve cardiometabolic health, the effective metabolites remain unclear. Also, the gut microbiota that involved 
in producing indole derivatives are less studied. We identified microbial taxa that can predict serum concentrations 
of the key indole metabolite indole-3-propionic acid (IPA) at population level and investigated the associations 
of indole derivatives and IPA-predicting microbial genera with cardiometabolic risk markers.

Methods  In a cohort of 318 community-dwelling adults, serum indole metabolites and fecal microbiota (16S ribo-
somal RNA) were measured at baseline. Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol 
(HDL-C), low-density lipoprotein cholesterol (LDL-C), and fasting blood glucose were repeatedly measured at baseline 
and again after 1 year. Brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI) were measured 
after 1 year. The association between indole derivatives and the 1-year changes in blood lipids and glucose, and asso-
ciation of indole derivatives with baPWV and ABI were investigated using linear regression models.

Results  Each 1 µmol/L increase in indole-3-acetic acid (IAA) levels was associated with 5.08% (P = 0.046) decrease 
in LDL-C. IPA levels were inversely associated with baPWV (percentage difference = -1.32%, P = 0.036). Per 1 µmol/L 
increase in Indole-3-aldehyde (IAld) levels was associated with 1.91% (P = 0.004) decrease in TC and 0.58% (P = 0.019) 
increase in ABI, but 1.79% decrease in HDL-C with borderline significance (P = 0.050). We identified 18 bacterial genera 
whose relative abundance was positively associated with serum IPA concentrations (PFDR < 0.05) and constructed 
a microbial score to reflect the overall IPA-producing potential. This score was inversely associated with baPWV (per-
centage difference = -0.48%, P = 0.007).

Conclusions  Our results suggest that IAA, IPA, IAld, and IPA-predicting microbial score are favorably associated 
with several cardiometabolic risk markers, although IAld may decrease HDL-C levels.
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Introduction
Cardiovascular diseases (CVDs) have become a public 
health-threatening problem [1]. Accumulating evidence 
has shown a link between CVDs and altered gut micro-
biota composition [2–4]. The gut microbiota metabolizes 
or ferments food components into a variety of metabo-
lites, which may mediate the impact of gut microbiota on 
cardiovascular health [5].

Tryptophan (Trp) is an essential amino acid that can 
only be obtained from protein-rich foods such as meat, 
fish, eggs, dairy, beans, nuts, and soy [6]. Trp in the intes-
tine is mainly catabolized through the kynurenine path-
way (KP), which represents 95% of ingested Trp [7]. A 
small portion of Trp (1–2%) can lead to the production 
of serotonin [8]. While the unabsorbed Trp (4–6%) can 
be directly transformed by the gut microbiota into indole 
and its derivatives (Supplementary Fig.  1) [9]. Among 
indole metabolites, indole pyruvic acid can give rise to 
indole-3-propionic acid (IPA), which is the final product 
of reductive Trp metabolism [10]. Indole pyruvic acid can 
also be further converted into indole-3-acetic acid (IAA), 
and subsequently into indole-3-aldehyde (IAld) [11]. The 
host and microbial Trp catabolite have been identified to 
manifest divergent effects on the progression of meta-
bolic disorders and CVDs. Some indole derivatives, such 
as IPA, IAA, and IAld can activate the aryl hydrocarbon 
receptor (AHR), which may favorably regulate inflam-
mation and immune responses [12–14]. According to 
recent studies, IPA can improve intestinal barrier func-
tion through the activation of the pregnane X receptor 
(PXR) [15]. While higher levels of KP catabolites, such as 
kynurenine, have been linked to inflammation and oxida-
tive stress, both of which are known to contribute to the 
onset of cardiometabolic diseases [16].

The gut microbiota profiles are indeed crucial in modu-
lating the production of indole metabolites from dietary 
Trp. Prior culture-based studies have identified multi-
ple bacterial genera capable of metabolizing Trp into 
indole and its derivatives [10, 17–19]. These studies may 
have not considered all microbes that contribute to the 
production of indole metabolites, given the known dif-
ficulties in culturing many of the microbes comprising 
the human gastrointestinal microbiome. Additionally, 
the evidence may not be applied to general populations, 
because human diet is complex, and the capacity of 
indole metabolites depends not only on host-microbial 
compositions, but also on the habitual diet consumed. 
Thus, identifying the indole metabolite-producing 

microbial taxa at population levels may better reflect the 
real-world settings.

Therefore, we leveraged an integrated microbiome-
metabolome data from a representative sample of 754 
community-dwelling adults in Huoshan, China. We 
aimed to identify gut microbial genera that could be 
involved in the production of IPA in a Chinese popu-
lation and investigate the association between serum 
indole metabolites as well as IPA-predicting micro-
bial genera and 1-year changes in cardiometabolic risk 
markers.

Methods
Study population
The Anhui Liver Diseases Study (ALDS) is an ongoing 
community-based cohort that started in 2020 in Lu’an 
and Ma’anshan, China. To ensure representativeness of 
the study population, we used a multistage cluster sam-
pling design. For example, among 3 districts and 4 coun-
ties in Lu’an, we selected 4 study sites including Huoshan 
County, Shucheng County, Jin’an District, and Yu’an 
District. We then randomly selected 4 towns or streets 
(an administrative unit of the county or district) in each 
study site, and 4 villages or communities in each town or 
street. Third, we selected 1 residential group in each vil-
lage or community, and 50 households in each residen-
tial group. Last, we selected 1 adult aged 18 years or older 
per household using the Kish selection grid technique.

In this study, we used data from 754 participants from 
the ALDS in Huoshan. Among them, 482 completed the 
baseline survey and the first round of follow-up inter-
view after 1 year. We excluded participants who did not 
provide fecal samples (n = 90) or had no data on cardio-
metabolic risk markers at baseline or after 1 year (n = 74). 
Therefore, 318 participants were included in the final 
analysis (Supplementary Fig.  2). All participants were 
unaware of the specific hypotheses being tested. The 
study was approved by the ethics committee of Anhui 
Medical University (Protocol Number: 20210730), and all 
subjects provided informed written consent.

Indole metabolites analysis
Baseline fasting blood samples were thawed and assayed 
for gut microbiota–derived tryptophan metabolites, 
including IPA, IAld, IAA, tryptamine (TAM), indole-
3-acetamide (IAM), and indole-3-acrylic acid (IA). Serum 
concentrations of indole metabolites were measured 
using high-throughput liquid chromatography-tandem 
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mass spectrometry techniques. Details of sample extrac-
tion, separation, and MS analysis have been described 
elsewhere [20].

Assessment of covariates
A structured questionnaire was used to collect age, sex, 
family income, education, smoking, alcohol consump-
tion, physical activity, and history of chronic diseases. 
Body weight and height were measured by trained inves-
tigators at baseline, and the body mass index (BMI) was 
calculated as weight in kilograms (kg) divided by height 
in meters squared (m2). Physical activity was quantified 
as the metabolic equivalent task (METS) hours per week. 
Hypertension and diabetes were identified if participants 
had been told by a healthcare professional that they had 
such diseases or took prescribed medications due to the 
diseases. Diabetes (fasting plasma glucose ≥ 126  mg/
dL) and hypertension (systolic blood pressure ≥ 140 or 
diastolic blood pressure ≥ 90 mmHg) were also identi-
fied through laboratory tests or physical examinations at 
baseline. Diet was assessed at baseline using a validated 
141-item food frequency questionnaire. The dietary 
approaches to stop hypertension (DASH) were calculated 
to assess overall diet quality [21].

Cardiometabolic risk markers
Serum glucose, triglycerides (TG), total cholesterol (TC), 
low-density lipoprotein cholesterol (LDL-C), and high-
density lipoprotein cholesterol (HDL-C) were repeat-
edly measured at baseline and after 1 year of follow-up. 
To quantify the degree of arterial stiffness, we measured 
brachial-ankle pulse wave velocity (baPWV) and ankle-
brachial index (ABI) using an oscillometric device (BP-
203RPEIII; Omron) after a 1-year follow-up. Blood lipids 
and glucose were quantified by electrochemilumines-
cence. The method for measuring baPWV and ABI has 
been detailed elsewhere [22]. High baPWV and low ABI 
are independent predictors of cardiovascular events and 
mortality [23, 24].

Fecal sample collection and microbiome profiling
Participants provided fecal samples at the same time with 
blood sample collection at baseline. Fecal samples were 
collected at home using a commode specimen collection 
system and a stool collection container (Fisher Scien-
tific) by the participants, and were delivered to the near-
est Community Health Center within 4 h. Upon arrival, 
each sample was immediately stored in − 80  °C freezers 
until nucleic acid extraction. In the current study, we 
only included participants without probiotic or antibiotic 
use at least 1.5 months before fecal sample collection to 
reduce the impact of probiotic or antibiotic use [25].

We profiled the fecal microbiome using 16S ribosomal 
RNA (rRNA) gene sequencing. The microbial community 
DNA was extracted using MagPure Stool DNA KF kit B 
(Magen, China). DNA was quantified with a Qubit fluo-
rometer by using the Qubit dsDNA BR Assay Kit (Inv-
itrogen, USA), and the quality was checked by running 
an aliquot on 1% agarose gel. Variable region V4 of the 
bacterial 16  S rRNA gene was amplified with degener-
ate PCR primers. Both forward and reverse primers were 
tagged with Illumina adapter, pad, and linker sequences. 
PCR enrichment was performed in a 50-µL reaction con-
taining 30 ng of template, fusion PCR primer, and PCR 
master mix. PCR cycling conditions were as follows: 
95 °C for 3 min, 30 cycles of 95 °C for 45 s, 56 °C for 45 s, 
72 °C for 45 s, and final extension for 10 min at 72 °C for 
10 min. The PCR products were purified using Agencourt 
AMPure XP beads and eluted in elution buffer. Libraries 
were qualified by the Agilent Technologies 2100 bioana-
lyzer. The validated libraries were used for sequencing on 
Illumina HiSeq 2500 platform (BGI, Shenzhen, China), 
and generating 2 × 250 bp paired-end reads. Genera with 
an average relative abundance over 0.001% were selected 
for our downstream analysis. In total, 75 genera were 
identified.

Statistical analysis
Baseline characteristics of the participants were pre-
sented as mean with standard deviation (SD) for continu-
ous normally distributed variables, median [inter-quarter 
range (IQR)] for continuous non-normally distributed 
variables, and percentages for categorical variables. Sta-
tistically significant differences in general characteris-
tics among tertiles of IPA levels were compared using 
one-way ANOVA, Kruskal-Wallis test, or chi-square 
test. The 1-year changes in blood glucose and lipids were 
calculated as the differences between the levels after 1 
year and the levels at baseline, and all variables were log-
transformed prior to calculation. Linear regression mod-
els were used to evaluate the association between serum 
concentrations of gut microbiota-derived tryptophan 
metabolites in indole pathway and cardiometabolic risk 
markers, adjusting for age, sex, education, family income, 
BMI, physical activity, smoking, alcohol drinking, total 
energy intake, and DASH score.

After applying Arc-sin square root transformation to 
relative abundances of taxonomic features, the feature-
wise associations between bacterial genera and serum 
indole metabolites were analyzed using linear regression. 
The models were adjusted for age, sex, BMI, total energy 
intake, physical activity, DASH score,  education, family 
income, smoking, and alcohol drinking. The Benjamini-
Hochberg false discovery rate (FDR) method was used for 
multiple testing corrections. Bacterial genera associated 
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with serum indole metabolites at an FDR < 0.05 were con-
sidered statistically significant.

Considering that IPA belongs to the end product of the 
indole pathway produced by gut microbiota [10], which is 
what most of the previous studies focused on [26, 27], we 
constructed an IPA-predicting microbial score (IPAMS) 
based on identified IPA-associated genera. This score 
summarizes the relative abundance of microbial gen-
era that were positively associated with IPA levels in the 
analysis at an FDR < 0.05. Microbial genera detected in 
≥ 50% of the samples were categorized as “high” (median 
levels or high) or “low” (less than the median level) 
according to the median relative abundance, whereas 
microbial genera detected in < 50% of the samples were 
dichotomously categorized according to the presence 
or absence of the genus. We assigned 1 point for higher 
abundance or presence of genera or 0 otherwise. The 
scores of all genera were then summed to calculate a total 
score. We also investigated the association between the 
IPAMS and cardiometabolic risk markers. We did not 
exclude participants who had missing data on covariates 
(generally < 1%) in the analysis and assigned a separate 
‘missing’ indicator variable in the models. To facilitate 
the interpretation, the effect sizes were back transformed 
if the variables were log transformed in the models [28]. 

We reported percentage differences and 95% confidence 
intervals (CIs) in cardiometabolic risk markers for each 
1 µmol/L increase in serum indole metabolites or 1 point 
increase in IPAMS. All analyses were performed using R 
version 4.2.0.

Results
Participant characteristics
The analysis encompassed 318 participants, including 
127 men and 191 women (mean [SD] age, 49.8 [14.7] 
years). The median serum concentrations of IPA in the 
population were 2.25 µmol/L (IQR 1.69 to 3.21 µmol/L). 
Compared to participants with the lowest tertile of 
serum IPA, those in the highest tertile were more likely to 
be women, and were less likely to be current smokers and 
current drinkers (Table 1).

Serum indole metabolites and cardiometabolic health
As shown in Table  2, per 1 µmol/L increase in base-
line serum concentrations of IAA was associated with 
a decrease in LDL-C, with the percentage differences of 
−5.08% (95%CI: −9.83, −0.09, P = 0.046). Higher serum 
IPA levels were associated with lower baPWV, with the 
percentage differences of −1.32% (95%CI: −2.53, −0.09, 
P = 0.036). Each 1 µmol/L increase in IAld was associated 

Table 1  Characteristics of 318 participants by tertiles of serum IPA levels in Huoshan, Chinaa

Abbreviations: BMI Body mass index, DASH Dietary approaches to stop hypertension, IPA Indole-3-propionic acid, METS Metabolic equivalent tasks
a Continuous variables are expressed as the mean (SD) or median (interquartile range) according to the distribution of the variables, while categorical variables are 
presented as %. P values were calculated from the one-way ANOVA or Kruskal-Wallis test for continuous variables and chi-squared test for categorical variables

Characteristics IPA P

Tertile 1 Tertile 2 Tertile 3

No. of participants 106 106 106

Age, years 48 (36-56) 53 (38-64) 53 (43-62) 0.07

Female, % 47.7 63.7 76.3 <0.01

Annual Household per capita income, % 0.70

  <10 000 Yuan 38.3 35.8 31.9

  10 000-20 000 Yuan 32.2 21.1 26.6

  >20 000 Yuan 29.5 43.1 41.5

Education, % 0.55

  Uneducated 19.2 16.4 20.7

  Primary school or below 31.3 31.2 22.0

  Junior high school or above 49.5 52.3 57.3

Current smokers, % 29.0 19.6 6.5 <0.01

Current drinkers, % 21.8 17.1 4.7 <0.01

BMI, kg/m2 25.2 (4.0) 24.0 (3.5) 24.3 (3.0) 0.08

Total energy intake, kcal/d 2193 (1685-2962) 2170 (1671-2681) 1928 (1665-2359) 0.07

Physical activities, METS-h/week 150 (93-189) 139 (95-198) 138 (100-201) 0.81

Hypertension, % 53.9 47.6 52.5 0.25

Diabetes, % 15.9 11.5 10.0 0.97

DASH scores 24 (22-27) 24 (21-27) 25 (22-27) 0.24
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with 1.91% (95% CI: −3.17, −0.63, P = 0.004) and 1.79% 
(95% CI: −3.56, −0.00, P = 0.050) decrease in TC and 
HDL-C from baseline to 1 year later, respectively. In addi-
tion, serum IAld concentrations were positively associ-
ated with ABI determined at 1 year, with the percentage 
differences of 0.58% (95%CI: 0.09%, 1.07%, P = 0.019). We 
did not find any statistically significant associations for 
TAM, IAM, and IA. We excluded each covariate one by 
one in the full-adjusted models and found that BMI most 
significantly contributed to the associations as a con-
founder (data not shown).

IPA, fecal microbiome and cardiometabolic health
Of the 75 identified bacterial genera, the relative abun-
dance of 18 genera was positively associated with serum 
IPA concentrations at FDR Q < 0.05 (Table 3). These gen-
era belong to the following 4 phyla families: Firmicutes 
(Roseburia, Dorea, Butyricicoccus, Ruminococcus, Eubac-
terium, Faecalibacterium, Gemmiger, Intestinimonas, 
Sporobacter, Oscillibacter, Clostridium_XlVb, Copro-
coccus), Actinobacteria (Adlercreutzia, Collinsella), 
Bacteroidetes (Prevotella, Alistipes, Odoribacter), and 
Verrucomicrobia (Akkermansia). Additionally, we 
observed a null association between gut microbial gen-
era and other serum indole derivatives (Supplementary 
Table 1).

We found an inverse association between the IPAMS 
and baPWV, with the percentage differences of −0.48% 
(95%CI: −0.82, −0.13, P = 0.007). We did not find any sta-
tistically significant association between the IPAMS and 
1-year changes in blood lipids and glucose (Table 4).

Discussion
In this 1-year longitudinal study, we found that indole 
metabolites, including IAA, IPA, and IAld, were favora-
bly associated with several cardiometabolic risk markers 
in Chinese community-dwelling adults, although IAld 
was inversely associated with the levels of HDL-C. We 
identified 18 bacterial genera whose relative abundance 
can predict higher serum levels of IPA, and constructed 
a microbial score to reflect the overall IPA-producing 
potential. This score showed an inverse association with 
the risk of arterial stiffness. Our findings may contribute 
to the development of novel approaches to improve car-
diometabolic health by enhancing IPA-producing capac-
ity by modulating the host gut microbiome.

To date, several studies have investigated the asso-
ciations between cardiometabolic health and indole 
metabolites, including IAA, IPA, and IAld. For exam-
ple, administration of IAA by intraperitoneal injection 
was found to decrease fasting blood glucose, plasma 
TC, and LDL-C levels in high-fat diet (HFD)-fed mice 
[29]. Another study revealed that fecal samples from 
individuals with metabolic syndrome showed lower 
concentrations of IAA, compared to those from healthy 
individuals [30]. These findings are consistent with our 
results that serum IAA concentrations were associated 
with a decrease in LDL-C levels. Experimental studies 
found that IPA markedly decreased markers for meta-
bolic impairments such as fasting blood glucose, fast-
ing insulin, TC, LDL-C, and TG levels [31, 32]. Human 
observational studies suggested a favorable associa-
tion between IPA and risk of several cardiometabolic 

Table 2  Associations between serum indole metabolites and cardiometabolic risk markers in Huoshan, China (N = 318)a

Abbreviations: ABI Ankle-brachial index, baPWV Brachial ankle pulse wave velocity, HDL-C High-density lipoprotein cholesterol, IA Indole-3-acrylic acid, IAA Indole-
3-acetic acid, IAld Indole-3-aldehyde, IAM Indole-3-acetamide, IPA Indole-3-propionic acid, LDL-C Low-density lipoprotein cholesterol, TAM Tryptamine, TC Total 
cholesterol, TG Triglycerides
* P value ≤ 0.05
a Linear regression model was adjusted for age (18-39, 40-49, 50-59, and ≥60 years), sex (women, men), education (no formal education, primary school or below, 
junior high school or above), annual household per capita income (<10,000 yuan, 10,000-20,000 yuan, >20,000 yuan), body mass index (<28.0 and ≥28.0 kg/m2), 
drinking status (never, past, current drinking), smoking status (never, past, current smoking), physical activity (metabolic equivalent tasks-h/week, tertile), total energy 
intake (kcal/day, tertile), and Dietary Approaches to Stop Hypertension index (continuous). Within the endings of baPWV and ABI, additional adjustments were made 
for hypertension and diabetes
b The 1-year changes were derived from the difference from baseline data after one year, and all variables were log-transformed to approximate a normal distribution 
of the residuals

Percentage difference (%) and 95% confidence interval

IAA TAM IA IPA IAld IAM

TCb −2.94 (−6.15, 0.37) 22.12 (−2.55, 53.05) −0.09 (−2.40, 2.28) −0.43 (−1.81, 0.96) −1.91 (−3.17,−0.63)* 3.27 (−2.98, 9.92)

TGb −6.78 (−15.2, 2.54) 8.52 (−42.9, 106.3) −1.89 (−8.18, 4.83) −2.50 (−6.25, 1.41) 1.76 (−1.95, 5.62) −9.75 (−24.4, 7.69)

HDL-Cb −2.90 (−7.33, 1.74) −0.96 (−27.7, 35.65) 0.98 (−2.25, 4.31) −0.51 (−2.41, 1.42) −1.79 (−3.56, −0.00)* 2.45 (−6.06, 11.72)

LDL-Cb −5.08 (−9.83, −0.09)* −10.0 (−36.4, 27.34) −2.40 (−5.83, 1.15) 0.01 (−2.10, 2.16) −0.79 (−2.76, 1.23) 3.81 (−5.66, 14.22)

Glucoseb −2.76 (−5.98, 0.58) −0.89 (−21.1, 24.46) −1.12 (−3.42, 1.23) −0.63 (−2.01, 0.76) −0.36 (−1.66, 0.96) −2.30 (−8.24, 4.02)

baPWV 1.74 (−1.27, 4.86) 11.20 (−9.15, 36.11) 0.05 (−2.02, 2.17) −1.32 (−2.53, −0.09)* −0.46 (−1.61, 0.72) −3.71 (−8.93, 1.80)

ABI 0.85 (−0.41, 2.13) −5.79 (−13.4, 2.52) −0.07 (−0.94, 0.81) −0.31 (−0.83, 0.21) 0.58 ( 0.09, 1.07)* −0.11 (−2.41, 2.26)
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disorders, including type 2 diabetes, dyslipidemia, and 
hepatic steatosis [27, 33–36]. We did not find any sta-
tistically significant association between IPA and blood 
lipids as well as blood glucose. The reasons for these 
discrepant findings are unclear, although another ani-
mal experiment found that water supplemented with 
IPA did not protect Western diet-fed mice from the 
cardiometabolic consequences [37]. In our study, we 
found that individuals with higher serum concentra-
tions of IAld tended to have lower TC levels, which 
indicates a lower risk of CVDs [38]. Interestingly, we 
also observed a correlation between baseline IAld levels 
and a subsequent decrease in HDL-C levels, which are 
inversely associated with the risk of CVDs [39]. How-
ever, the health benefits of high HDL-C remain unclear. 
The randomized clinical trials on HDL-C raising phar-
maceuticals generally showed no or harmful effects on 
cardiovascular health [40]. Due to the intricate compo-
sition and inter-changeability of the serum lipid profile, 
clarifying the role of HDL-C in cardiovascular health is 
much more challenging. Thus, to completely compre-
hend the complex association between IAld and choles-
terol metabolism, further study is necessary.

Atherosclerosis is the underlying cause of most CVDs. 
One observational study showed that plasma concentra-
tions of IPA and IAld were lower in patients with severe 
atherosclerosis compared to an age- and gender-matched 
control group. It also showed a positive association 
between IPA and ABI (low ABI is an indicator of periph-
eral atherosclerosis) [41]. Another study offered experi-
mental evidence that supplementation with IPA could 
facilitate macrophage reverse cholesterol transport to 
inhibit atherosclerosis [42]. Moreover, emerging evidence 
has revealed that IPA can activate the PXR, which inhib-
its inflammation, and can induce vasodilation [15, 43].

IPA, as the final product of the Trp reduction metab-
olism, was found to be entirely dependent upon gut 
microflora [44]. One animal study demonstrated that 
the abundances of the two genera, Oscillibacter and 
Odoribacter, which were implied to be important for 
intestinal homeostasis, were decreased in the HFD-fed 
group and recovered in the IPA group [45]. Consist-
ently, in our investigation, Oscillibacter and Odoribac-
ter genera displayed a significant positive correlation 
with IPA. We found that the richness of Akkerman-
sia, Coprococcus, Eubacterium, Faecalibacterium, and 

Table 3  Abundance of bacterial genera associated with serum IPA among 318 participants in Huoshan, China*

*P values were estimated from linear regression after adjustment for age (18-39, 40-49, 50-59, and ≥60 years), sex (women, men), education (no formal education, 
primary school or below, junior high school or above), annual household per capita income (<10,000 yuan, 10,000-20,000 yuan, >20,000 yuan), body mass index 
(<28.0 and ≥28.0 kg/m2), total energy intake (kcal/day, tertile), physical activity (metabolic equivalent tasks-h/week, tertile), smoking status (never, past, current 
smoking), drinking status (never, past, current drinking), and Dietary Approaches to Stop Hypertension index (continuous). All taxa with Q < 0.05 are included in the 
table. Q value, false discovery rate-corrected P < 0.05. Prevalence indicates the proportion of participants in each genus

Abbreviations: IPA Indole-3-propionic acid

Phylum; class; order; family; genus Prevalence (%) Average 
abundance 
(%)

β SE P value Q value

Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Roseburia 98.43 4.68 2.05 0.61 <0.01 <0.01

Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Dorea 87.74 0.20 14.13 3.35 <0.01 <0.01

Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Butyricicoccus 96.54 0.24 8.96 3.40 0.01 0.03

Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Ruminococcus 83.33 1.15 4.72 1.12 <0.01 <0.01

Firmicutes; Clostridia; Clostridiales; Eubacteriaceae; Eubacterium 60.69 0.23 6.18 2.16 <0.01 0.02

Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Faecalibacterium 98.74 7.60 2.53 0.62 <0.01 <0.01

Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Gemmiger 81.45 0.76 5.48 1.27 <0.001 <0.01

Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Intestinimonas 41.51 0.02 19.51 6.92 0.01 0.02

Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Sporobacter 60.06 0.14 7.48 2.63 <0.01 0.02

Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Oscillibacter 89.62 0.34 8.81 2.12 <0.01 <0.01

Actinobacteria; Actinobacteria; Coriobacteriales; Coriobacteriaceae; Adlercreutzia 53.46 0.02 29.61 8.22 <0.01 <0.01

Actinobacteria; Actinobacteria; Coriobacteriales; Coriobacteriaceae; Collinsella 62.89 0.20 6.35 2.31 0.01 0.02

Verrucomicrobia; Verrucomicrobiae; Verrucomicrobiales; Verrucomicrobiaceae; 
Akkermansia

40.88 0.65 3.26 1.12 0.01 0.02

Bacteroidetes; Bacteroidia; Bacteroidales; Prevotellaceae; Prevotella 86.48 13.80 0.75 0.24 <0.01 0.01

Bacteroidetes; Bacteroidia; Bacteroidales; Rikenellaceae; Alistipes 86.16 1.00 3.06 1.15 0.01 0.03

Bacteroidetes; Bacteroidia; Bacteroidales; Porphyromonadaceae; Odoribacter 69.81 0.08 13.90 4.07 <0.01 0.01

Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Clostridium_XlVb 83.96 0.15 9.00 2.33 0.01 0.02

Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Coprococcus 74.84 0.22 9.00 2.33 <0.01 <0.01
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Ruminococcus genera was positively associated with 
serum IPA concentrations, which have been reported in 
other studies [17, 26, 46]. Due to the limitation of 16S 
rRNA sequencing, we cannot identify the specific spe-
cies that may produce IPA. However, the pathway pro-
ducing IPA has been mostly investigated in Clostridium 
sporogenes [47]. Moreover, several gut bacterial gen-
era, such as Adlercreutzia, Collinsella, and Alistipes, 
can predict serum IPA levels in our population, which 
have not yet been reported in other populations. This 
could be due to the distinct microbial compositions 
among different ethnic groups. It is possible that these 
bacteria together constitute a complex environment 
that is favorable for the IPA-producing genera. In sum-
mary, our study validates previous findings at the genus 
level and introduces novel bacterial genera that could 
potentially contribute to IPA production in the Chinese 
population.

Given the intricate and interdependent nature of the 
human gut microbiota, our study systematically identi-
fied the specific microbial taxa that may potentially be 
involved in IPA production, and developed a microbial 
score to reflect the overall IPA-producing potential. This 
score showed an inverse association with baPWV. Our 
results may help develop potential strategies to improve 
cardiometabolic health by shaping the host gut microbi-
ome through enhancing the production of IPA.

The strengths of the present study include the pro-
spective design, the use of repeated measures for cardio-
metabolic risk markers, and the representative sample of 
community-dwelling adults in Huoshan, China. However, 
our study has several limitations. First, despite the pro-
spective design, we were unable to assess the associations 
of serum indole metabolites and gut microbiota with 
long-term cardiometabolic outcomes due to the short 
(i.e., 1 year) follow-up period. Second, despite the adjust-
ments for a wide range of dietary and lifestyle variables, 
there was still the possibility of residual confounding. 
Third, due to the use of 16S rRNA gene sequencing, the 
taxonomic resolution was limited to the genus level in 
most cases. Thus, the evaluation of fecal microbial gene 
expression using deeper sequencing (e.g., metagenomics) 
may enhance our study. Last, our study was conducted in 
a Chinese population, which might limit its generalizabil-
ity to other populations.

In conclusion, we discovered multiple new bacterial 
genera that may be involved in the production of IPA 
in a Chinese population, and confirmed earlier studies 
on IPA-producing microbial taxa at the genus level. We 
also developed a microbial score to reflect the overall 
IPA-producing potential. We showed that this micro-
bial score and several indole metabolites are favorably 
associated with cardiometabolic risk markers. These 
findings, if confirmed, will aid in the development of 
personalized nutrition to improve cardiometabolic 
health by targeting gut flora.
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Table 4  Associations between IPA-predicting microbial score 
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Abbreviations: ABI Ankle-brachial index, baPWV Brachial ankle pulse wave 
velocity, HDL-C High-density lipoprotein cholesterol, IPA Indole-3-propionic acid, 
LDL-C Low-density lipoprotein cholesterol, TC Total cholesterol, TG Triglycerides
a Linear regression model was adjusted for age (18-39, 40-49, 50-59, and ≥60 
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or below, junior high school or above), annual household per capita income 
(<10,000 yuan, 10,000-20,000 yuan, >20,000 yuan), body mass index (<28.0 and 
≥28.0 kg/m2), drinking status (never, past, current drinking), smoking status 
(never, past, current smoking), physical activity (metabolic equivalent tasks-h/
week, tertile), total energy intake (kcal/day, tertile), and Dietary Approaches to 
Stop Hypertension index (continuous). Within the endings of baPWV and ABI, 
additional adjustments were made for hypertension and diabetes
b The 1-year changes were derived from the difference from baseline data 
after one year, and all variables were log-transformed to approximate a normal 
distribution of the residuals

 Linear regression model coefficients

 Percentage difference (95% CI) P

 TCb  -0.28 (-0.67, 0.11)  0.161

 TGb  -0.24 (-1.35, 0.87)  0.667

 HDL-Cb  -0.31 (-0.85, 0.23)  0.262

 LDL-Cb  -0.25 (-0.85, 0.35)  0.413

 Glucoseb  -0.30 (-0.69, 0.09)  0.130

 baPWV  -0.48 (-0.82, -0.13)  0.007

 ABI  -0.05 (-0.19, 0.10)  0.544
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