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Abstract 

Background  Climate change has devastating impacts on agriculture, increasing the yield gap for most crops, 
especially in developing nations. This is likely to worsen food insecurity in some countries, calling for efforts to close 
the yield gap as much as possible. Estimating the yield gap and its drivers is essential for devising strategies 
to increase yields. This study quantifies the wheat yield gap in Morocco’s five major wheat production regions. It 
analyzes the historical sensitivity of wheat yield to temperature, precipitation, and soil moisture, which are important 
factors affecting agricultural productivity. Furthermore, it evaluates how these yield gaps impact the revenue of pro-
ducers in these regions. This analysis was conducted using datasets, including the Global Dataset of Historical Yield 
(GDHY) for yield gap assessment, soil moisture data, ERA5 reanalysis data, and CHIRPS datasets for climate assessment 
from 1982 to 2016. Pearson correlation and multiple linear regression analyses were employed to reflect the variation 
characteristics of wheat yield and to identify the impacts of precipitation, temperature, and soil moisture on wheat 
yield.

Results  High regional differences in wheat yield gaps were observed, with values ranging from 1.64 t/ha in Casa-
blanca Settat to 4.12 t/ha in Marrakech Safi, and temporal variability ranging from 9 to 18%. Wheat yields were found 
to be strongly correlated with rainfall, particularly from December to March. Temperature fluctuations had a signifi-
cant negative impact on wheat yield across the regions. Soil moisture was positively correlated with wheat yields 
throughout all growing periods, showing the strongest impacts during the early vegetative development phase. 
Additionally, losses due to wheat yield gaps were considerable, ranging between $ 194 and 891 per hectare. The 
revenue loss due to Yield Gap I ranged from 49 to 71%, while the loss due to Yield Gap II ranged from 240 to 444%, 
depending on the method used to calculate the wheat yield gap.

Conclusions  Results reveal gaps in wheat yield, forming a basis for process-based modeling to understand crop 
yield gap drivers. Understanding yield gap drivers will play a pivotal role in evidence-based intervention strategies 
to enhance yields. By applying such strategies, it is possible to not only manage and reduce the variability in wheat 
production, but also ensure sustainable agricultural practices and achieve food security in Morocco and beyond.

Keywords  Wheat, Yield gap, Climate, Food security, Sustainable development goals, Morocco

Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

Agriculture & Food Security

*Correspondence:
Lahcen Ousayd
lahcen.ousayd@gmail.com
Full list of author information is available at the end of the article

http://orcid.org/0009-0002-5683-3338
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40066-024-00509-w&domain=pdf


Page 2 of 23Ousayd et al. Agriculture & Food Security           (2024) 13:55 

Introduction
The United Nations Food and Agriculture Organization 
(FAO) estimated that 750 million people, about a tenth 
of the world’s population, were facing severe food inse-
curity globally in 2019 [29]. Food security is an essential 
element for the sustainable development of the world’s 
economy and human society [78]. In this context, Zero 
Hunger has been identified as one of the Sustainable 
Development Goals (SDGs) set by the United Nations, 
and its realization contributes to the achievement of 
other goals, such as SDG1 (No Poverty). This highlights 
the need for increased sustainable food production to 
meet the needs of a growing global population against 
the backdrop of climate change [30].

Agriculture plays an important role in Moroccan soci-
ety and the economy, employing about 40% of the coun-
try’s population [61]. Cereal crops such as wheat, maize, 
oats, barley, and rice, are grown in rotation alongside 
other annual crops like legumes, industrial crops, and 
fodder crops. These crops are cultivated in various agro-
climatic zones across the country [51]. A significant 
portion of cereal farms in Morocco is located in rain-
fed regions of the lowlands and plateaus in the regions 
of Casablanca Settat, Rabat Sale Kenitra, Fes Meknes, 
Beni Mellal Khenifra, and Marrakech Safi. These rainfed 
regions are particularly vulnerable to climate variabil-
ity and change, with recent studies indicating increasing 
challenges due to erratic rainfall patterns and rising tem-
peratures [19]. Rapid population growth, urbanization, 
and changing diets, among other stressors, affect agri-
culture and, consequently, food security, especially for 
cereals. Thus, in a country like Morocco, where cereals, 
especially wheat, are among the most important crops 
and occupy over 3 million hectares of agricultural land, 
they are likely to be adversely affected.

Wheat is one of the three most important food crops; 
it is the primary food source for more than 40% of the 
world’s population [1]. Thus, changes in wheat produc-
tion greatly impact the global grain production pattern 
and food security. For instance, the COVID-19 pandemic 
disrupted food systems, exacerbating vulnerabilities, par-
ticularly in low- and middle-income countries [11, 75]. 
Similarly, the Russia–Ukraine conflict, involving two of 
the world’s leading wheat producers, further disrupted 
wheat farming operations, worsening the global food 
crisis, especially in nations that depend heavily on food 
imports [8]. Besides such social factors, wheat yield has 
been declining globally, driven by several factors, includ-
ing global change, water depletion, soil fertility decline, 
and the threat of emerging diseases [40]. According to 
Shiferaw et al. [85], heat stress and water scarcity are pro-
jected to pose more challenges to wheat farming systems, 
particularly those in South and West Asia and North 

Africa. The FAO estimates that global food demand will 
double by 2050 and that productivity will decline because 
of global warming and a rise in CO2 concentration [28]. 
Thus, meeting global food demand will require a 60–70% 
increase in production by 2050 [4, 28]. This calls for an 
effective food security strategy at the center of which is 
reducing agriculture’s environmental footprints and the 
limited availability of land suitable for crop production.

In Morocco, wheat is the second most important crop 
after olives, with a production value of USD 850 million 
[10]. Its consumption has recorded a significant rise, 
growing from 138 kg per person in the 1960s to an aver-
age of 255 kg per person by 2016. However, the country’s 
food self-sufficiency has decreased. In the 1960s, domes-
tic wheat production met over 80% of the country’s con-
sumption needs, but by the late 1990s, this figure had 
fallen to 62%, while imports grew from 20 to 38% over 
the same period. In the early 2000s, domestic wheat out-
put met around 60% of domestic demand on average [10]. 
Before the 1970s, wheat yield in Morocco was relatively 
as low as 0.9 t/ha. The situation changed following the 
introduction of improved wheat cultivars in the 1980s, a 
strategy that significantly increased yield. In recent years, 
the average yield for durum wheat has been around 1.5 
t/ha, while bread wheat has an average yield of 1.6 t/ha 
[10]. Despite these improvements, Morocco’s wheat yield 
still faces multiple challenges leading to substantial yield 
gaps persist, particularly under rainfed conditions. This 
wide range underscores the ongoing challenge of yield 
instability and calls for the urgent strategies to narrow 
the gap.

Morocco’s wheat yield continues to lag behind the 
global and regional benchmarks. The country’s average 
yield remains well below the global average of nearly 3 t/
ha, it even falls short of the African average of 2.3 t/ha 
[10]. This disparity not only highlights the potential for 
improvement but also points to the complex interplay of 
factors, mainly climate, that contribute to the persistent 
yield gaps. Addressing these challenges requires a com-
prehensive understanding of how these environmen-
tal factors impact wheat productivity across Morocco’s 
diverse agricultural landscapes.

Meeting the rising demand for wheat in Morocco 
is challenging, particularly as the agricultural sector 
remains largely rainfed. Wheat cultivation, which relies 
heavily on rainfall, covers over 80% of Morocco’s arable 
land, with yields varying significantly in space and time 
[56]. Compounding these challenges, Morocco is recog-
nized as a climate change ‘hotspot’, with projections indi-
cating a 2  °C temperature increase and a 20% reduction 
in rainfall by 2050 [46]. Such changes are likely to exac-
erbate stress on agricultural production, making effective 
water management strategies critical to mitigating yield 
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gaps. In response to these challenges, the Green Morocco 
Plan (PMV) was introduced to boost agricultural produc-
tivity and to ensure the sustainable development of rural 
areas. The PMV successfully increased cereal production, 
with studies suggesting yield improvements of 10% to 
21% through enhanced farming practices [24].

Farm practices, climate, and other biological factors 
limit crop yield, creating a gap. This yield gap concept 
has often been adopted as a framing instrument for agri-
cultural policy globally, as it significantly impacts policy 
actions to either reduce such gaps or implement revenue 
security mechanisms to support farmers in years of poor 
harvest [9, 27, 91]. Potential yield (PY) is time- and loca-
tion-specific, considering regional differences in growth-
defining variables and the advent of improved cultivars 
over time [32, 33, 57, 58, 69]. In Morocco, the impact of 
environmental factors on wheat yield is particularly sig-
nificant. Precipitation, temperature, and soil moisture 
play critical roles in determining wheat yield, especially 
in rainfed systems. However, the precise quantification of 
the contribution of climate variables to the yield gap in 
Morocco’s diverse agroecological zones remains a chal-
lenge. Furthermore, the spatial and temporal variations 
in the yield gap have not been adequately quantified. 
This limited analysis hinders the development of targeted 
strategies to improve the much needed wheat productiv-
ity in the face of climate variability and change.

Several studies have investigated yield potentials and 
quantified yield gaps for a wide range of crops. These 
studies encompass major grain crops such as rice, wheat, 
and corn [72, 83, 88] as well as various other crops in 
diverse agroecological environments [36, 63, 99],van Vugt 
et al., 2018; [3, 64, 87, 98, 102]. Furthermore, researchers 
have conducted analyses at different spatial scales, rang-
ing from local to global [12, 53, 55, 69, 100].

In the field of yield gap quantification and analysis, 
researchers integrate various approaches, including field 
surveys, crop simulation models, remote sensing technol-
ogy, and statistical methods, to leverage the strengths of 
each technique. Field surveys offer better precision com-
pared to broader provincial, regional, national, or global 
studies. However, conducting field surveys over large 
areas can be resource-intensive and challenging. Recent 
studies (e.g., [18, 22, 86]) demonstrated that remote sens-
ing and statistical data can effectively analyze yield gaps 
at provincial, regional, and national levels. These meth-
ods enable rapid trend analysis and support strategic 
decision-making.

Research shows that crop production is substantially 
affected by regional factors, including socioeconomic, 
agricultural, and ecological conditions. Additionally, 
the important role of scientific and technological inno-
vations in enhancing the resilience and productivity of 

food systems in Africa has been documented [31, 60, 
73]. Evidently, quantifying yield gaps and understand-
ing the factors that influence them are essential for 
making informed decisions to enhance future crop pro-
duction [23, 57]. In Morocco, studies by Pala et al. [76], 
Devkota & Yigezu [20], and Epule et al. [26], identified 
significant yield gaps between rainfed and irrigated 
environments in the central wheat-growing region. 
Despite the importance of wheat in Morocco, regional-
scale yield studies are limited due to the scarcity of 
data. This knowledge gap limits the understanding of 
how climatic factors affect wheat yields, especially in 
the country’s arid and semi-arid regions, highlighting 
the need for more comprehensive research.

This study aims to address these research gaps by 
providing a comprehensive analysis of the impact of 
precipitation, temperature, and soil moisture on wheat 
yield in Morocco at the regional level. Through the 
integration of regional-level data, remote sensing, and 
climate information, this work quantifies the relative 
contributions of environmental factors to wheat yield 
across different Moroccan regions. In addition, the 
study estimates the economic impact of the quantified 
yield gaps, providing an important perspective on their 
effects on wheat producers’ revenue.

Data and methods
Study area
Morocco is located in the northwest part of North 
Africa, covering approximately 710,850 km2 with a 
population of about 37 million. The country is divided 
into 12 administrative regions. Its climate exhibits high 
spatiotemporal variability. The North has a Mediter-
ranean climate, primarily influenced by the Mediter-
ranean Sea. The west experiences a temperate climate, 
shaped by the Atlantic Ocean, leading to mild win-
ters, moderate temperatures, and relatively cool sum-
mers. Inland areas are characterized by a Continental 
climate, while the southern part of Morocco, border-
ing Mauritania, is impacted by the Saharan desert, 
which exerts a significant Sahelian effect on southern 
Morocco. Rainfall variability is pronounced across the 
country, with approximately 50% of Morocco’s precipi-
tation occurring over just 15% of the total area [81]. 
Rainfall is mainly recorded in winter, from October to 
May, increasing from south to north, ranging from less 
than 150  mm to more than 1000  mm [6]. Throughout 
the year, the average air temperature ranges from 12 °C 
to 14  °C in winter and from 22  °C to 24  °C in summer 
[5, 13]. This study focuses on Morocco’s key wheat-pro-
ducing regions (Fig. 1), which are crucial for the coun-
try’s agriculture and overall food security.
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Datasets
The study utilized various datasets (Table 1) and crop cal-
endars to understand the timing of agricultural activities. 
Figure  2 illustrates the wheat growth cycle in Morocco, 
based on Balaghi et al. [6] and Achli et al. [2].

Global data on actual and potential wheat yields
Wheat yield data were sourced from the Global Dataset 
of Historical Yields (GDHY) [43]. The data are a combi-
nation of agricultural census statistics from FAOSTAT 
and satellite data to produce historical yield data for 
four major crops around the world and have a spatial 
resolution of 0.5° for maize, rice, wheat, and soybeans, 

spanning from 1981 to 2016 [44]. Utilized several other 
datasets, including satellite products such as GIMMS3g 
0.083° bi-monthly leaf area index (LAI) and fraction of 
photosynthetically active radiation (FPAR) [101] and 
MOD15A2 1-km 8-day LAI and FPAR [71] to develop 
this dataset. They also incorporated JRA-55 reanalysis 
(0.563° and daily) [52], solar radiation data from JRA-25 
reanalysis (1.125° and daily) [74], crop calendar informa-
tion from SAGE [80], harvested area data from M3 Crops 
[67], and production share data by cropping season from 
USDA. Iizumi et al. [45] and Iizumi and Sakai [43] pro-
vide details on the methodology used to develop the data. 
The data used in this analysis are based on a calibrated 

Fig. 1  Morocco a the five major cereal-producing regions in Morocco, and b the spatial distribution of the average 1982–2016 wheat yield 
across these regions

Table 1  Summary of datasets used in study

Dataset Data description Resolution Type References

Yield Actual yield data (GDHY) 0.5° × 0.5° Spatial and temporal [43]

Potential yield [69] 0.083° × 0.083° Spatial [69]

Wheat area Wheat harvested area 0.083° × 0.083° Spatial [77]

Climate Wheat-growing season precipitation 0.05° × 0.05° Spatial and temporal [34]

Wheat-growing season temperature 0.1° × 0.1° Spatial and temporal [41]

Other Wheat-growing season soil moisture 0.25° × 0.25° Spatial and temporal [21],
[38])
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version of the yield system (v1.2 and v1.3) compared to 
other yield products published earlier. Consequently, 
these historical yield data are of better quality and cover 
a more extended period to meet scientific research 
needs. This study considers the wheat yield derived from 
GDHY as the actual yield (Ya), focusing on Morocco’s 
primary wheat-producing regions. Using climate analog 
techniques, Mueller et  al. [69] derived data on poten-
tial yields. Their study analyzed current yields and aver-
age climate and mapped them to a climate space using 
geographic coordinates. The climate space was divided 
into 100 growing-degree-day precipitation bins with the 
harvest area evenly distributed among the 100 growing-
degree-day precipitation bins. The 95th percentile yield 
was considered the attainable yield level for each bin, and 
this value was applied to all geographical areas within the 
same bin. Mueller et  al. [69] provide more information 
on the methodology used. The PY used in this study is 
the average census data between 1997 and 2003, derived 
from Mueller et  al. [69] with 0.083° resolution (Fig.  3). 
The data were preprocessed and extracted for wheat-
growing areas in Morocco, and the accuracy of the wheat 
yield data was evaluated using a reliable crop yield data-
set from the Fes-Meknes region and its provinces. This 
dataset served as a reference to assess the accuracy of 
GDHY v.1.3 at various levels and on an annual basis.

Climate data
Maximum (Tmax), average (Taver), and minimum (Tmin) 
temperature (°C) were obtained from the European 5th 
generation reanalysis data (ERA5-land) developed by the 
European Centre for Medium-Range Weather Forecasts 
(ECMWF) [70]. The data have a spatial resolution of 0.1° 
and temporal coverage from 1959 to the present (2020). 
This study used monthly resolution data as our investiga-
tion required monthly frequency data. Figure 4 and Fig. 5 
represent the maximum, average, and minimum temper-
atures and the average precipitation recorded between 
1982 and 2016.

Monthly precipitation was computed for each wheat-
growing season from October to May to represent in-
crop rainfall using the Climate Hazards Group InfraRed 

Precipitation with Station (CHIRPS) dataset that pro-
vides daily precipitation data at a 0.05° resolution since 
1981, combining satellite data on cloud temperatures 
and rain gauge information [34]. Verner et al. [93] com-
pared four different datasets and found that CHIRPS 
was statistically accurate in identifying drought events 
and seasonal precipitation in Morocco. CHIRPS is 
selected for use in this study based on the findings of 
Verner et  al. [93]. These data were interpolated using 
the nearest neighbor method into a regular cell of 
0.5° × 0.5° to be consistent with yield data. Studies have 
shown that droughts during crucial growing stages can 
severely reduce crop yield and even lead to crop failure, 
while early-season droughts have little impact [37, 54]. 
By dividing the growing season into calendar months, 
it is possible to pinpoint the most sensitive phases for 
wheat crops concerning climate variability.

Fig. 2  Wheat calendar in Morocco

Fig. 3  Potential yield data for Morocco from Mueller et al. [69]
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Soil moisture data
The soil moisture (SM) data used in this study were 
obtained from the Climate Change Initiative Soil 
Moisture (CCI-SM) datasets released by the Euro-
pean Space Agency (ESA) for the period from 1981 
to 2016 (version v07.1) [21, 38]. Specifically, the com-
bined active–passive product (CCI-C) was utilized, 
which was aggregated over the wheat-growing sea-
son (November–May) and monthly time steps. The 

CCI-SM v07.1 products provide global daily surface 
soil moisture content at a spatial resolution of 0.25°. 
Previous studies [65, 66] have shown the CCI-C prod-
uct has a higher correlation and lower errors compared 
to CCI-A or CCI-P when validated against ground 
measurements. The SM data were used by Zhang and 
Jia (2013) to calculate the Soil Moisture Condition 
Index. Figure 6 shows the average wheat-growing sea-
son soil moisture for the period 1982 to 2016 in the 
studied regions.

Fig. 4  Average wheat-growing season a Tmin, b Taver, and c Tmax, for the period 1982 to 2016

Fig. 5  Cumulative wheat-growing season (November to May) 
precipitation averaged from 1982 to 2016

Fig. 6  Soil moisture average during wheat-growing season 
for the period 1982 to 2016
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Harvested area
Monthly Irrigated and Rainfed Crop Areas data from 
MIRCA2000 for the year 2000 were utilized to determine 
the wheat harvested area in Morocco. Crop-specific aver-
age planting and harvesting dates in 2000 were compiled 
from national and subnational crop progress reports [77]. 
Irrigated and rainfed agricultural systems were combined 
in this study since the GDHY dataset does not differenti-
ate between the two.

Data analyses
This study utilized the locally weighted regression model 
(LOWESS) detrending method [17] to eliminate the 
effects of technological advancements, errors in report-
ing during the study period, as well as non-climatic fac-
tors, such as genetics and agronomic improvements, 
before analyzing the impact of climate on wheat yield. 
The same approach was employed by related studies (e.g., 
[62, 84, 89, 96]). The LOWESS is suitable for short time 
series and accounts for trend non-linearity compared to 
other methods (e.g., linear regression model, smoothing 
spline models, and moving average models). The method 
is one of the most used methods for crop yield detrend-
ing [59]. After the trend was fitted, the yield time series 
were detrended using the additive method that involves 
subtracting the trend line from the original data. In con-
trast, the multiplicative method involves computing the 
detrended time series as the ratio of the original data to 
the trend line values [59]. Moreover, this work deployed 

the Akaike Information Criterion (AIC), which is a sta-
tistical method used to choose between different models. 
It measures the balance between a model’s goodness-
of-fit and complexity, providing a way to compare com-
peting models quantitatively. The AIC value is based on 
the model’s likelihood function and penalizes models 
with more parameters, favoring simpler models that can 
explain the data well. The goal is to find the model that 
strikes the best balance between explaining the data and 
avoiding overfitting. The LOWESS detrending is used to 
detrend the data and the AIC is used to compare different 
detrending methods using different smoothing param-
eter values ("f" or "span" that determines the degree of 
smoothing applied to the data). The detrending methods 
with different "f" values are fitted to the data, and the AIC 
values are calculated for each fitted model. A lower AIC 
value indicates a better fit to the data with a reasonable 
balance of complexity. In this study, the AIC values are 
calculated for the two detrending methods: additive and 
multiplicative detrending.

Framework for wheat yield gap quantification and analysis
Yield gaps were quantified in two ways as presented in 
Fig. 7. The first yield gap (YG I) is the difference between 
the Ya and the highest achievable yield of the Ya in the 
time series ( PYmax ) (Eq. 1). The second type of yield gap 
(YG II) refers to the difference between PY estimated by 
Mueller et al. [69] ( PYmueller ) and Ya (Eq. 2)

Fig. 7  The framework used to estimate the wheat yield gap
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Correlation analyses were performed to evaluate the 
relationships between monthly and growing season 
cumulative precipitation, monthly and growing season 
soil moisture condition index (SMCI) calculated using 
Eq. 3, and detrended wheat yield:

The SMCI formula normalizes the current soil mois-
ture value (SMi) relative to historical extremes to provide 
an indicator of dryness. SMi is scaled as a percentage 
between the minimum (SMmin) and maximum (SMmax) 
soil moisture values from long-term records. SMCI 
ranges from 0% at the extreme dry end to 100% at the sat-
urated upper limit. This standardized metric quantifies 
moisture status compared to past wet and dry extremes, 
supporting agricultural drought monitoring without spe-
cifically referring to soil moisture.

Pearson’s correlation analysis [95] was used to eval-
uate the relationship between climate variables and 

(1)YG I = PYmax − Ya

(2)YGII = PYmueller − Ya

(3)SMCI =
SMi − SMmin

SMmax − SMmin
∗ 100

detrended wheat yield. The correlation coefficient’s sign 
and magnitude help reveal the relationship’s nature and 
strength. Additionally, linear regression analysis was 
utilized to assess the effects of temperature variables 
(Tmin, Taver, and Tmax) and precipitation on wheat yield. 
This study provides a comprehensive spatiotemporal 
assessment of the historical yield gap in the studied 
regions by calculating these two types of yield gap. Fur-
thermore, it highlights the impacts of climatic factors 
(precipitation and temperature) on wheat crop yield. 
Figure  8 illustrates the conceptual framework used in 
our analysis.

Multiple linear regression model
A comprehensive regression model (Eq.  4) was 
employed to investigate the influence of climatic vari-
ables on crop yield, considering both the entire growing 
season and monthly timescales. This approach allows 
us to assess intra-annual variability and identify criti-
cal periods within the growing season that significantly 
affect wheat yield:

Fig. 8  The overall methodological framework for yield gap analysis
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In the yearly model configuration, Y is wheat yield, β₀ is 
the model’s intercept indicating the expected yield when 
all predictors are zero, and the coefficients β₁, β₂, β₃ relate 
to the annual minimum, mean, and maximum tempera-
tures, respectively. The coefficient β₄ is linked to the total 
annual precipitation, and β₅ corresponds to the average 
annual soil moisture, with ε representing the error term 
capturing unexplained variability. For the monthly analy-
sis, Y continues to represent the wheat yield. The coeffi-
cients β₁, β₂, β₃, β₄, β₅ are retained but applied to specific 
monthly data, making it possible to assess how each 
month’s climatic conditions individually affect wheat 
yield. This allows the model to dissect intra-annual vari-
ability and pinpoint critical periods within the growing 
season that significantly impact wheat yield, such as a 
specific β coefficient for each month in the wheat-grow-
ing season, offering month-specific insights into the cli-
matic drivers of crop yield.

Addressing multicollinearity among predictors is cru-
cial to ensure the reliability of our regression analysis. 
We assess this using the variance inflation factor (VIF), 
which quantifies the increase in variance of an estimated 
regression coefficient caused by multicollinearity. A VIF 
of 1 indicates no multicollinearity, while values above 5 
suggest significant issues, potentially distorting the coef-
ficients and reducing the model’s statistical power. In our 
case, we proactively remove predictors with a VIF greater 
than 5 to eliminate significant multicollinearity. This 
strategy enhances the robustness and accuracy of our 
model, ensuring it effectively captures the impact of cli-
matic variables on crop yield. The VIF for each predictor 
Xi is calculated using Eq. 5:

where R2
p is the coefficient of determination from a 

regression of predictor p on all other predictors. We first 
identify the statistically insignificant predictors to obtain 
significant predictors. We then proceed to remove one 
insignificant predictor at a time and rerun the model. 
This iterative procedure is repeated until all predictors in 
the model achieve statistical significance.

Statistical indices
Several statistics were applied at yearly time steps to 
assess the accuracy of GDHY v.1.3 and the detrended 

(4)

Y = β0 +
∑

(βi × Xi, Tmin)+
∑

(

βj × Xj , Taver
)

+
∑

(βk × Xk , Tmax)

+
∑

(βl × Xl , precipitation)

+
∑

(βm × Xm, soil moisture)+ ε.

(5)VIFp = 1/(1− R2
p),

data: coefficient of determination (R2) (Eq.  6), RMSE 
(root mean square error, t/ha) (Eq. 7), MAE (mean abso-
lute error, t/ha) (Eq. 8), IA (index of agreement) (Eq. 9), 
and NSE (Nash–Sutcliffe efficiency) (Eq. 10):

where n refers to the number of samples; yi is the 
observed data for the year i;Ŷ  is the estimated data for 
the year i ; Y  is the average.

Wheat yield gap impact on the revenue of the producers
There is a need for detailed farm-level expenditure data, 
including costs associated with family and hired labor, 
nitrogen fertilization, phytosanitary use, mechanization 
(including machine rental and fuel costs), and seeds, as 
well as regional production costs to measure the impact 
of wheat yield gap on farmers. However, obtaining this 
data is a significant challenge. In response to this chal-
lenge, this work presents a refined approach to quantify 
yield gap losses in wheat production. The confounding 
effects of price trends was addressed  by applying the 
LOWESS method to the FAOSTAT wheat price data  to 
ensure accurate revenue estimation. This effectively iso-
lates yield-driven revenue variations from market fluc-
tuations. Utilizing detrended yield data, actual revenue 
was calculated by multiplying the detrended yield by the 
detrended price of wheat. Potential revenue was deter-
mined using two benchmarks: the maximum potential 
yield and Mueller’s potential yield, both multiplied by the 
detrended price of wheat. Yield gap losses were quantified 
as the difference between potential and actual revenues, 
based on YG I and YG II. The yield gap losses were fur-
ther expressed as percentages of the potential revenues 
to enhance the clarity and interpretability of the results. 
Specifically, percentage revenue losses were calculated by 
dividing the absolute revenue losses by their respective 

(6)R2 =
1 −

∑

(Yi − Ŷ )2

∑

(Yi − Ŷ )2
,

(7)
RMSE =

√

√

√

√

(
∑

(

yi − Ŷ
)2

n
,

(8)MAE =

∑

|yi − Ŷ |

n
,

(9)IA = 1 −

∑

|yi − ŷ|
∑

(|yi − Y | + |Ŷ − Y |)
,

(10)NSE = 1 −

∑

(yi − Ŷ )2
∑

(yi − y)2
,
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potential revenues (maximum potential yield or Mueller’s 
potential yield) and multiplying by 100.

Results
GDHY accuracy assessment and detrending
Visual inspection of trend fitting for wheat yield dem-
onstrates that the fitted trend closely follows the under-
lying time-series data pattern (Fig.  9). Locally weighted 
regression models provide accurate trend fitting for 
both regional and national wheat yield time series. The 
national level and Fes Meknes region exhibit the best 
model performance among the evaluated regions, with 
relatively low RMSE (0.21 t/ha and 0.24 t/ha) and MAE 
values (0.18 t/ha and 0.15 t/ha), indicating smaller aver-
age differences between GDHY-derived actual yield and 
detrended yield. The high NSE values (68% and 66%) sug-
gest good capture of actual yield variability and strong 
agreement between detrended and actual yield (90% and 
89%). In contrast, Marrakech Safi, Casablanca Settat, and 
Beni Mellal Khenifra show somewhat higher RMSE (0.33 
t/ha, 0.47 t/ha, 0.27 t/ha) and MAE values (0.27 t/ha, 
0.38 t/ha, 0.17 t/ha), indicating larger average differences 
between detrended and actual yield. Their NSE values 
(20%, 42%, 60%) suggest moderate model performance 
in capturing actual yield variability, though they main-
tain reasonably good agreement between detrended and 
actual yield (86%, 82%, 87%). Rabat Sale Kenitra dem-
onstrates the highest discrepancies, with RMSE of 0.68 
t/ha and MAE of 0.62 t/ha, and a negative NSE (-44%), 

indicating poor model performance compared to the 
mean of observed values. However, it still shows moder-
ate agreement (68%) between detrended and actual yield. 
In summary, while the national level and Fes Meknes 
region demonstrate superior performance, other regions 
exhibit varying degrees of model accuracy and agreement 
with actual wheat yield data. Table 2 provides a summary 
of these results.

The GDHY performance across different scales reveals 
varying levels of accuracy in predicting wheat yield 
(Table  3). Taounate demonstrates relatively small aver-
age differences between GDHY-derived and observed 
yield, with an RMSE of 0.38 t/ha and an MAE of 0.29 t/
ha. Taza follows with reasonable accuracy (RMSE: 0.42 
t/ha, MAE: 0.35 t/ha), while Meknes exhibits higher dis-
crepancies (RMSE: 0.65 t/ha, MAE: 0.51 t/ha). Ifrane 
showcases better accuracy with lower RMSE (0.36 t/
ha) and MAE (0.27 t/ha) values. The Fes Meknes region 

Fig. 9  GDHY wheat yield (for Morocco) against the detrended wheat yield

Table 2  Quantitative measures of trend-fitting results

Region RMSE (t/ha) MAE (t/ha) NSE (%) IA (%)

National 0.21 0.18 68 90

Fes Meknes 0.24 0.15 66 89

Marrakech Safi 0.33 0.27 20 86

Casablanca Settat 0.47 0.38 42 82

Beni Mellal Khenifra 0.27 0.17 60 87

Rabat Sale Kenitra 0.68 0.62 −44 68
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overall shows intermediate performance (RMSE: 0.45 t/
ha, MAE: 0.37 t/ha). At the national level, the model 
achieves acceptable performance with an RMSE of 0.5 t/
ha and an MAE of 0.47 t/ha. The R2 values demonstrate 
the model’s ability to explain yield data variability, with 
higher values observed at regional and national levels. 
Overall, the model shows promising results, captur-
ing localized trends and patterns with varying levels of 
accuracy across different scales. Based on these findings, 
we can incorporate this dataset into our analysis at the 
regional level, as it offers significant insights into regional 
patterns and trends in wheat yield.

Historical wheat yield gap quantification in Morocco
The wheat yield gap at the national scale is presented 
in Fig. 10. YG I ranged from a minimum value of 0 to a 
maximum value of 1.17 t/ha. Notably, the coefficient of 
variation (CV) for YG I was found to be relatively high 
at 57%, indicating significant variability. As for YG II, the 
values range from a minimum of 2.56 t/ha to a maximum 
of 3.73 t/ha. In contrast to YG I, YG II exhibited a lower 
CV at 10%, suggesting a comparatively smaller dispersion 
and greater consistency among the data points.

The temporal evolution of the wheat yield gap across 
the five studied regions and the national average can be 
seen in Fig.  11. For YG II, the Casablanca Settat region 
stands out with the lowest yield gap, indicating higher 

agricultural productivity compared to the other regions, 
while Rabat Sale Kenitra closely follows with the second-
lowest yield gap. The remaining three regions exhibit 
consistent yield gap patterns, suggesting similar produc-
tivity levels among them. It can be concluded that the 
trends and patterns are remarkably similar and closely 
aligned. Figure 12 complements the analysis by displaying 
the spatial distribution of yield gaps across each region, 
and it showed marked spatial variations, enhancing our 
understanding of localized productivity variations. The 
notable difference between Casablanca Settat and the 
others highlights the potential for targeted interventions 
to enhance yields in less productive areas.

Figure 13 provides key insights into the minimum and 
maximum for YG I and YG II for 35 years (1982–2016) 
at the national and regional levels. It is observed that the 
minimum yield for YG I is 0 t/ha in all regions as we con-
sider the maximum in the time series as PY, and ranges 
from 1.64 t/ha in Casablanca Settat to 3.02 t/ha in Fes 
Meknes for YG II. On the other hand, the maximum 
yield gap varies from 1.10 t/ha in Fes Meknes to 1.75 t/
ha in Marrakech Safi for YG I, and from 3.07 t/ha in Cas-
ablanca Settat to 4.12 t/ha in Marrakech Safi for YG II, 
representing the highest yield gaps in these regions. Fur-
thermore, the variability of wheat yield over time (repre-
sented by coefficients of variation) is presented for both 
variables, with values ranging from 44 to 68% for YG I 
and 9% to 18% for YG II.

Impact of precipitation, soil moisture, and temperature 
on historical wheat yield
The relationship between wheat yield, monthly wheat-
growing season, and cumulative inter-season precipi-
tation from 1982 to 2016 is presented in Fig.  14. The 
correlation between wheat yield and monthly cumula-
tive precipitation across different regions shows certain 
patterns and variations. The correlation is consistently 
positive in November across all regions (ranging from 

Table 3  Quantitative measures of GDHY accuracy

RMSE (t/ha) MAE (t/ha) R2 IA (%)

Taounate 0.38 0.29 0.58 0.82

Taza 0.42 0.35 0.71 0.79

Meknes 0.65 0.51 0.68 0.83

Ifrane 0.36 0.27 0.5 0.83

Fes Meknes 0.45 0.37 0.78 0.82

National 0.5 0.47 0.94 0.76

Fig. 10  Wheat yield gap at the national level
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Fig. 11  Wheat yield gap (YG I and YG II) time series in the studied regions

Fig. 12  Average wheat YG II in the five analyzed regions for the period 1982–2016

Fig. 13  Wheat yield gap at the regional scale (average PYmueller in red and PYmax in blue)
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0.48 in Beni Mellal Khenifra to 0.54 in Fes Meknes), sug-
gesting that November precipitation is crucial for wheat 
agricultural productivity. However, in December, the cor-
relations show some variation among regions, although 
most areas still show a positive relationship. All regions 
show consistently positive correlations in January (rang-
ing from 0.36 in Casablanca Settat to 0.51 in Beni Mel-
lal Khenifra). While February’s correlations vary slightly, 
the general trend is positive (ranging from 0.31 in Fes 
Meknes to 0.39 in Rabat Sale Kenitra). Despite small 
differences among regions, the correlation in March 
remains positive (from 0.41 in Rabat Sale Kenitra to 0.49 
in Beni Mellal Khenifra). In most regions, however, nega-
tive correlations (ranging between -0.17 in Beni Mellal 
Khenifra and -0.28 in Rabat Sale Kenitra and Casablanca 
Settat), are observed in April. This indicates that pre-
cipitation may harm wheat yield during this month. The 
results from May reveal mixed results, with correlations 
varying somewhat among the regions (from −0.03 in 
Marrakech Safi to 0.15 in Fes Meknes). Moreover, study-
ing the relationship between wheat yield and monthly 
cumulative precipitation is crucial in rainfed regions, 
where rainfall is essential for crop development.

Positive correlations between these factors are signifi-
cant since most wheat cultivation relies on rainfall. Dur-
ing the vegetation growing period (VGP) from November 
to February, which is critical for crop development, there 
is a correlation ranging from 0.64 in Casablanca Set-
tat to 0.71 in Beni Mellal Khenifra. Similarly, the posi-
tive correlation between cumulative precipitation in the 

reproduction and maturity period (RMP) from March 
to May ranges from 0.13 in Marrakech Safi and Casa-
blanca Settat to 0.23 in Beni Mellal Khenifra. Throughout 
the entire growing season (CGP), there are strong posi-
tive correlations ranging from 0.64 to 0.70, demonstrat-
ing that precipitation plays a major role in determining 
wheat yield in rainfed regions in Morocco.

A regression analysis between the wheat yield and the 
mean precipitation received during the wheat-growing 
season is assessed in Fig. 15.

The analysis of the relationship between average grow-
ing season precipitation and wheat yield from 1982 to 
2016 (Fig.  15) through linear regression provides valu-
able insights. The coefficient of determination across dif-
ferent regions indicates that 40% to 49% of the variation 
in wheat yield can be explained by average growing sea-
son precipitation. For instance, the Beni Mellal Khenifra 
region has an R2 value of 0.45, suggesting that 45% of the 
variability in wheat yield can be attributed to variations in 
average growing season precipitation. Similarly, the Cas-
ablanca Settat region has an R2 value of 0.43, indicating 
that 43% of the variation in wheat yield can be explained 
by average growing season precipitation. Additionally, 
positive slopes for all regions signify a positive relation-
ship between precipitation and wheat yield, with different 
magnitudes providing estimates of the strength of this 
relationship, suggesting that for every increase in aver-
age growing season precipitation, there is a correspond-
ing increase in wheat yield. The study’s low P-values offer 
robust evidence to support the assertion that fluctuations 

Fig. 14  Box plot and coefficient of correlation of monthly (a) and growing periods (b) cumulative precipitation and wheat yield from 1982 to 2016
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in the amount of precipitation during the growing season 
have a considerable effect on the productivity of wheat. 
The results show that changes in precipitation levels have 
a direct impact on the yield of wheat crops in the studied 
regions, with statistical significance.

The analysis showed positive correlations between 
SMCI and wheat yield across all growing periods 
(Fig. 16). For the vegetative growing period (VGP) lasting 
from November to February, correlation values ranged 
from 0.50 in Rabat Sale Kenitra to 0.64 in Marrakech Safi. 
This reveals that soil moisture during early development 
impacts wheat yields. In the reproduction and maturity 
period (RMP) from March to May, correlation values 
extend from low (0.23 in Marrakech Safi) to moderate 
(0.62 in Casablanca Settat), showcasing varying levels 
of correlation strength across regions, the weaker RMP 
correlations suggest moisture during heading and grain 

filling is less critical in some regions. For the full cumu-
lative growing period (CGP) lasting from November to 
June, correlations were strongest, varying from 0.58 in 
Marrakech Safi to 0.75 in Casablanca Settat. The high 
CGP correlations underline the importance of sufficient 
moisture throughout the entire wheat cycle. Overall, 
while moisture deficits can negatively affect yields, ongo-
ing water sufficiency is most critical early in the growing 
season.

The analysis of monthly correlations provides addi-
tional insights into how soil moisture relates to wheat 
yield over the growing season. In the early vegetative 
months of November–December, correlation coeffi-
cients were moderately positive, ranging from 0.17 in Fes 
Meknes to 0.47 in Casablanca Settat. This points to the 
importance of adequate moisture during germination 
and emergence for crop establishment. In January and 

Fig. 15  Regression analysis between wheat yield and average wheat-growing season precipitation

Fig. 16  Box plot and coefficient of correlation of monthly (a) and growing periods (b) SMCI and wheat yield from 1982 to 2016
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February, correlations increased, varying from 0.33 in 
Beni Mellal Khenifra to 0.62 in the same region and Rabat 
Sale Kenitra as the wheat entered active tillering and 
stem elongation growth phases, which are sensitive to 
moisture deficits. During the March–April reproductive 
period, correlations were more variable, ranging from 
−0.09 in Marrakech Safi to 0.60 in Rabat Sale Kenitra, 
indicating moisture stress impacts heading and grain fill-
ing differently across regions. Finally, in the May ripening 
stage, correlations ranged from 0.20 in Marrakech Safi to 
0.61 in Casablanca Settat, demonstrating soil water sta-
tus continues modulating yield as harvest approaches. 
Overall, the monthly correlations highlight that sufficient 
moisture is most critical in the December–February span 
when the wheat is developing vegetative structures, and 
ongoing adequate moisture remains important through 
final maturation in May.

The linear regression analysis of the relationship 
between temperature and wheat yield has revealed that 
the effect of Tmin, Taver, and Tmax during the wheat-
growing season on wheat yield differs between regions 
(Fig. 17). The Beni Mellal Khenifra region shows a signifi-
cant negative impact with an R2 value of 0.17 and a slope 
of −0.15 (p-value = 0.01). Marrakech Safi also has a nota-
ble negative effect with an R2 value of 0.15 and a slope 
of −0.27 (p-value = 0.02). Casablanca Settat has a moder-
ate impact with a slope of −0.26 (p-value = 0.04) and an 
R2 value of 0.12. Regions like Fes Meknes and Rabat Sale 
Kenitra show weaker relationships with negative slopes 
of −0.09 (p-value = 0.27) and −0.11 (p-value = 0.28), 

respectively, and lower R2 values of 0.04. These findings 
suggest that the impact of changes in Tmin on differ-
ent regions of Morocco varies greatly. Specifically, the 
regions of Beni Mellal Khenifra and Marrakech Safi seem 
to be more sensitive to such changes. In contrast, Fes 
Meknes, and Rabat Sale Kenitra are less affected. Simi-
larly, the impact of Taver on wheat yield also varies across 
regions. Marrakech Safi and Casablanca Settat show the 
strongest impact among the regions with a slope of −0.27 
(p-value of 0.01 and R2 of 0.19 and 0.17, respectively). 
Beni Mellal Khenifra, Fes Meknes, and Rabat Sale Keni-
tra also exhibit a moderate impact with negative slopes of 
−0.17 (p-value = 0.01), −0.14 (p-value = 0.06) and −0.16 
(p-value = 0.05), respectively, and R2 values of 0.20, 0.10 
and 0.11, respectively. Linear regression did not demon-
strate a measurable predictive relationship at accepted 
significance levels (p < 0.01) within any of the studied 
regions between Tmax and wheat yield during the growing 
season. The R2 values range from 0 to 0.3, indicating that 
temperature explains about 0% to 3% of wheat yield vari-
ation. The P-values range from 0.31 to 0.87.

The performance of the MLR model (Table  4) across 
the five regions demonstrated its ability to explain a 
significant portion of the variability in wheat yield over 
the entire growing season. The R2 values ranged from 
53.16% to 66.13%, with adjusted R2 values slightly lower, 
indicating substantial model fit and explanatory power. 
In Beni Mellal Khenifra, soil moisture (SM) and cumu-
lative precipitation (Precip_cum) positively influenced 
yield, with coefficients of 0.013 and 0.001, respectively. 

Fig. 17  Regression analysis between wheat yield and average wheat growing Tmin (a), Tmax (b), and Taver (c)
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Marrakech Safi exhibited significant positive effects 
from soil moisture (coefficient = 0.033) and a negative 
effect from mean temperature (Taver, coefficient = -0.152). 
In Fes Meknes, both cumulative precipitation (coef-
ficient = 0.001) and soil moisture (coefficient = 0.010) 
positively impacted yield, while mean temperature had 
a negative effect (coefficient = −0.091). Casablanca Set-
tat showed a strong positive influence from cumulative 
precipitation (coefficient = 0.002) and soil moisture (coef-
ficient = 0.010), with mean temperature negatively affect-
ing yield (coefficient = −0.176). In Rabat Sale Kenitra, 
soil moisture (coefficient = 0.010) and mean temperature 
(coefficient = −0.124) were significant predictors, empha-
sizing the importance of soil moisture across all regions 
and the detrimental effect of high mean temperatures 
during the growing season.

The intra-annual analysis provided further insights 
into the critical monthly impacts of temperature and 
precipitation on wheat yield (Table  5). In Beni Mellal 
Khenifra, the model showed a high R2 of 75.26%, driven 
by significant predictors such as Tmax in January (nega-
tive effect, coefficient = −0.045), Tmax in February (nega-
tive effect, coefficient = −0.034), and precipitation in 
November, December, and January (positive effects, 
coefficients = 0.004, 0.003, and 0.005, respectively). For 
Marrakech Safi, precipitation in November, January, 
February, and March had substantial positive impacts 
on yield, with March precipitation being particularly 
influential (coefficient = 0.011). The Fes Meknes region’s 
results highlighted the importance of Tmin in December 

(positive effect, coefficient = 0.040) and Tmax in March 
(negative effect, coefficient = -0.047), alongside precipita-
tion in multiple months. Casablanca Settat region dem-
onstrated the significance of November, January, and 
March precipitation (positive effects, coefficients = 0.006, 
0.005, and 0.013, respectively), while Rabat Sale Kenitra 
showed notable impacts from Tmax in December and Feb-
ruary (negative effects, coefficients = −0.042 and −0.029) 
and precipitation in November, January, and March.

Impact of yield gaps on revenue
The impact of the yield gap on revenue varies signifi-
cantly across the studied regions (Figs. 18 and 19). In the 
Beni Mellal Khenifra region, the average actual revenue 
is $ 265 per hectare. The revenue loss attributable to YG 
I is 57%, while the loss due to YG II is 363%. In the Casa-
blanca Settat region, the average actual revenue is $ 272 
per hectare, with revenue losses of 71% due to YG I and 
240% due to YG II. For the Fes Meknes region, the aver-
age actual revenue is $ 275 per hectare, where the rev-
enue loss from YG I is 49% and from YG II is 356%. In 
the Marrakech Safi region, the average actual revenue is 
$ 227 per hectare, with losses of 153% due to YG I and 
444% due to YG II. Finally, in the Rabat Sale Kenitra 
region, the average actual revenue is $ 271 per hectare, 
with revenue losses of 51% from YG I and 311% from YG 
II.

Discussion
This study aimed to quantify the wheat yield gap in 
Morocco, including its spatial and temporal variability. 
Additionally, it analyzed the effect of climate variables 
on wheat yield. The yield gap was quantified using two 
approaches (YG I and YG II) over 35 years (1982 to 2016) 
at national and regional levels. The results revealed vari-
ations in yield metrics, indicating the presence of yield 
gaps across the studied regions. For example, the yield 
gap ranged from 0 t/ha to 1.75 t/ha for YG I and from 
1.64 t/ha to 4.12 t/ha for YG II.

We explored the variability of wheat yields over time, 
indicated by the CV, which ranged from 44 to 68% for 
YG I and 9% to 18% for YG II. The CV values reflected 
the degree of yield fluctuations relative to the mean, with 
higher values indicating significant variations. The high-
est YG I and YG II values were in the south and south-
west regions, which record low annual precipitation, 
while the lowest yield gap was in the north.

Compared to global-scale analyses, our calculated 
yield gaps aligned well with estimates from the GYGA, 
especially using YG II. We compared our yield gap anal-
ysis using GDHY as Ya to previous studies, particularly 
examining global EarthStat data for Morocco [67, 69]. 
This revealed strong similarities between our findings 

Table 4  Summary of multiple linear regression (MLR) statistics 
for the studied regions (average growing season data)

Region S R-sq(%) R-sq(adj)(%) R-sq(pred)(%)

Beni Mellal Khenifra 0.211 60.71 58.25 51.46

Marrakech Safi 0.330 53.16 50.23 44.33

Fes Meknes 0.225 55.31 50.98 42.58

Casablanca Settat 0.260 66.13 62.85 55.06

Rabat Sale Kenitra 0.214 62.38 58.74 51.73

Table 5  Summary of multiple linear regression (MLR) statistics 
for the studied regions (monthly data)

Region S R-sq(%) R-sq(adj)(%) R-sq(pred)(%)

Beni Mellal Khenifra 0.182 75.26 68.84 57.57

Marrakech Safi 0.272 71.14 67.29 63.32

Fes Meknes 0.179 75.37 68.99 58.08

Casablanca Settat 0.269 63.77 60.26 48.79

Rabat Sale Kenitra 0.216 63.92 57.69 47.92
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and those from alternate approaches, with minor differ-
ences likely due to variations in data sources, methods, 
and spatial resolution. Furthermore, studies conducted 
in Morocco have reported potential yields ranging from 
as low as 1.53 t/ha during drought years to as high as 
5.99 t/ha in favorable years [19]. These findings further 

illustrate the significant variability in wheat yield driven 
by climatic factors.

The extensive benchmarking against global and local 
analyses supports the validity of our yield gap assess-
ment for Moroccan wheat. Mueller’s PY appears prefer-
able to using the maximum attainable yield as a proxy 

Fig. 18  Annual achieved revenue and revenue loss per hectare due to the YG I

Fig. 19  Annual achieved revenue and revenue loss per hectare due to the YG II
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for potential yield. Spatial and temporal fluctuations 
remained consistent despite variations. These insights 
show that YG II is the best approach since Mueller’s 
technique determines potential yield, whereas YG I 
considers only the current maximum attainable yield. 
Overall, Mueller’s approach estimates agricultural pro-
ductivity more robustly, improving yield gap assessment 
and recommendations by avoiding the limitations of 
using attainable yields alone.

The wheat productivity in Morocco is below its poten-
tial, with rainfed areas producing only about 25% of the 
achievable yield and irrigated areas producing around 
60% [76]. Benaouda and Balaghi [7] reported that by 
2050, 71% of Morocco’s land will be unsuitable for 
wheat cultivation. We can measure the extent of under-
performance and prioritize areas for improvement by 
quantifying the yield gap. Analyzing the impact of cli-
mate variables helps us recognize the specific climatic 
constraints affecting wheat growth and yield formation. 
This information can inform the implementation of tai-
lored strategies to address these limitations, such as 
introducing heat-tolerant varieties or optimizing water 
management techniques, and encourage stakeholders to 
collaborate on increasing wheat yield, particularly in rain-
fed systems across various regions. This effort requires 
immediate attention due to the difficulties of a growing 
population, soil degradation, and climate change. Hence, 
although Ya in Morocco has stagnated over the years, 
there appears to be room for further yield improvement.

Furthermore, we discussed the impact of climatic vari-
ables (precipitation, maximum, minimum, and average 
temperature) on wheat yield using linear regression and 
Pearson correlation to detect relationships and trends. 
Positive (negative) correlations indicate that increases 
(decreases) in climate variables tend to raise (lower) 
yields. Significant correlations were noted between wheat 
yield and climate variables during the growing season.

Although a warming trend was observed for the wheat 
growth season in the studied regions, only an increase in 
Tmin was statistically significant at p < 0.01. The increase 
in Tmin was greater than in Tmax, while no significant 
change was noted in precipitation. Wheat crops thrive in 
temperate climates, and high temperatures can negatively 
impact them during various stages of growth. Tempera-
tures exceeding 30  °C can damage leaves and photosyn-
thesis, accelerating aging (Wilcox et al., 2014; [47]). Kajla 
et al. [48] indicated that rising temperatures might signif-
icantly impact global wheat production, especially during 
flowering [82].

Changes in precipitation can have mixed effects; 
increased rainfall benefits water-scarce areas but can 
harm regions with heavy precipitation by causing soil sat-
uration and nutrient loss. In semi-arid and arid regions 

like Morocco, rainfall is crucial. This aligns with Yacoubi 
et  al. [103], who found significant correlations between 
cereal yields and rainfall. Consistent with Tafoughalti 
et al. [90] in the Fes Meknes region, results show an over-
all positive and significant correlation between precipi-
tation and wheat yield. However, April rainfall showed 
weaker correlations (coefficients -0.17 to -0.28) due to 
potential waterlogging and increased disease risk during 
wheat maturation.

This study underscores the critical role of precipitation 
and temperature in influencing wheat yield, particularly 
during key growth stages such as germination, tiller-
ing, and grain filling. Adequate rainfall in months like 
November, January, and March is vital for maintaining 
optimal soil moisture levels, which support healthy wheat 
growth. This positive impact is evident in the Beni Mellal 
Khenifra, Marrakech Safi, Fes Meknes, and Casablanca 
Settat regions, where precipitation during these months 
significantly boosts yield. However, as highlighted by 
Mamassi et al. [60] the Mediterranean climate’s frequent 
droughts and variable rainfall patterns complicate these 
dynamics, exacerbated by suboptimal crop management 
practices. This underscores the need for both climate-
adaptive measures and improvements in farming prac-
tices to effectively close yield gaps. Conversely, high 
temperatures in January, February, and March can lead to 
heat stress, reducing tillering and grain filling, and ulti-
mately decreasing yield. This negative effect of high tem-
peratures is reflected in the results for several regions, 
highlighting the importance of local climate conditions, 
soil types, and farming practices. Understanding these 
dynamics is essential for developing tailored agricultural 
practices that suit local conditions, especially in regions 
dependent on rainfed agriculture. In areas where high 
temperatures negatively impact yield, strategies such as 
adjusting planting dates or adopting heat-tolerant wheat 
varieties could mitigate adverse effects. In addition, opti-
mizing irrigation practices to ensure adequate water sup-
ply during critical growth periods can enhance yields in 
regions where precipitation has a substantial positive 
effect. This study emphasizes the need for region-spe-
cific strategies to increase wheat resilience to climate 
variability.

Multi-scale studies have shown that soil moisture avail-
ability notably influences wheat yields under water-lim-
ited conditions. A study in the predominantly rainfed 
wheat-growing regions of Morocco demonstrated wheat 
production relies heavily on adequate soil moisture, as 
well as other factors [14]. More localized analysis in two 
key Moroccan wheat provinces highlighted soil moisture 
as a primary statistical driver of observed yield variability 
[39]. Additional work in nearby Mediterranean districts 
showed soil moisture, along with other climatic factors, 
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plays a major role in determining yields when rainfall is 
low (Gaona et al. 2022. Collectively, these findings indi-
cate soil moisture is a key constraint on rainfed wheat 
when water is scarce. These studies follow our findings,we 
have shown a good correlation between wheat yield data 
and soil moisture. In irrigated areas, water supply is con-
trolled, and increased soil moisture improves wheat yield. 
Proper irrigation helps maintain good soil moisture, 
which is important for plant growth, nutrient utilization, 
and overall crop health. During critical stages of develop-
ment such as seedling and flowering, adequate soil mois-
ture is essential for wheat crops. Inadequate rainfall and 
low soil moisture can lead to reduced yields and yield 
stress, especially during the dry season. Precipitation 
timing and amount impact moisture availability, but soil 
water content in the crop root zone emerges as a proxi-
mal factor critical for limiting wheat growth and yields 
under water limitation. The consistent moisture–yield 
relationship implies practices like conservation tillage 
[68] and supplemental irrigation may be needed where 
rainfall alone is insufficient, as exemplified by using irri-
gation to supplement rainfall in Moroccan agriculture to 
maintain crop yields. This irrigation method is used to 
offset any delay or lack of precipitation during the grow-
ing season to meet agricultural water demands. This is 
a key component of the regulation and management of 
production, both quantitatively and qualitatively. Conse-
quently, the increase in wheat yield is based on the orien-
tation of irrigation towards the most critical phases, since 
the crop expresses special water needs at various stages 
of development. Productivity is negatively affected by 
water shortage during these crucial periods, as it can lead 
to a decrease in productivity. Furthermore, to manage 
wheat irrigation, it is important to identify the develop-
ment phases that are susceptible to water scarcity.

Morocco’s efforts to increase wheat productivity and 
reduce reliance on imports are driven by the need to 
become self-sufficient. Currently, almost 40% of the 
country’s wheat supply is imported (FAO, 2020). By clos-
ing yield gaps in both rainfed and irrigated environments, 
Morocco can achieve its goal of relying on its wheat pro-
duction. To this end, irrigated areas must be expanded 
to cover 21% of the total wheat area [76], which can be 
achieved by providing supplemental irrigation in rainfed 
areas. The Green Morocco Plan (PMV) and National Pro-
gram for Saving Water in Irrigation (PNEEI) initiatives 
aimed at promoting sustainable agriculture, integrat-
ing smallholder farming into a growth-oriented strategy, 
reducing rural poverty, and promoting efficient water 
use. However, the economic benefits of the PMV are 
unevenly distributed, often favoring external investors 
over local farmers, raising concerns about long-term sus-
tainability and equity [25]. Furthermore, the PMV’s focus 

on intensification risks exacerbating resource depletion, 
particularly water, as increased irrigation demands could 
lead to significant groundwater extraction [24].

Conclusion
This study analyzed wheat yield gaps across Morocco’s 
primary production regions and examined the impact of 
climate variability on yields. Our findings revealed signif-
icant yield variations, with yield gaps averaging 1.75 t/ha 
for YG I and 4.12 t/ha for YG II, while actual wheat yields 
remain low. Precipitation, soil moisture, and temperature 
emerged as crucial factors influencing yield dynamics, 
with increased temperatures in arid and semi-arid areas 
causing water stress and impairing wheat grain develop-
ment during critical growth stages.

There is need for a multifaceted approach to address 
these challenges. Investing in climate-resilient agri-
culture through the development of heat-tolerant and 
drought-resistant wheat varieties is essential. Implement-
ing comprehensive water management policies and pro-
moting efficient irrigation practices can help mitigate 
water scarcity issues. Enhancing climate information ser-
vices, including improved weather forecasting and early 
warning systems, can aid farmers in making informed 
decisions about planting dates and crop management. 
Furthermore, promoting the adoption of precision agri-
culture techniques, such as soil moisture sensors and 
variable-rate irrigation systems, can optimize resource 
allocation. Strengthening agricultural research and 
extension services is crucial to addressing study limita-
tions and disseminating climate-smart farming practices. 
Developing region-specific adaptation strategies tailored 
to the unique challenges of different agroecological zones 
within Morocco is also recommended.

These findings and recommendations provide a foun-
dation for future process-based modeling studies to 
assess the impacts of various drivers on yield gaps in 
Morocco. Ultimately, implementing these strategies 
can contribute to sustainable and economical increases 
in wheat production, helping to close yield gaps and 
enhance food security in the face of climate variability.

Notably, the results of this research are not without 
uncertainties. Firstly, the findings would benefit greatly 
from having access to cropland masks detailing annual 
changes in planting areas. As a result of the lack of yearly 
data in this study, we were limited to analyzing planting 
masks for the year 2000, which imposes limitations on 
the robustness of our findings. Secondly, utilizing data 
with a spatial resolution of 0.5° could introduce some 
limitations in capturing subtle variations. Lastly, when 
quantifying YG II, utilizing average census data spanning 
from 1997 to 2003, we note that over time there may have 
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been variations and developments, and this should be 
considered in interpretation.
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