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Abstract 

Background The microbiome greatly affects health and wellbeing. Evolutionarily, it is doubtful that a host would rely 
on chance alone to pass on microbial colonization to its offspring. However, the literature currently offers only lim-
ited evidence regarding two alternative hypotheses: active microbial shaping by host genetic factors or transmission 
of a microbial maternal legacy.

Results To further dissect the influence of host genetics and maternal inheritance, we collected two-cell stage 
embryos from two representative wild types, C57BL6/J and BALB/c, and transferred a mixture of both genotype 
embryos into hybrid recipient mice to be inoculated by an identical microbiome at birth.

Conclusions Observing the offspring for six generations unequivocally emphasizes the impact of host genetic fac-
tors over maternal legacy in constant environments, akin to murine laboratory experiments. Interestingly, maternal 
legacy solely controlled the microbiome in the first offspring generation. However, current evidence supporting 
maternal legacy has not extended beyond this initial generation, resolving the aforementioned debate.
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Graphical Abstract

Introduction
The human body is colonized by as many microbial cells 
as there are human cells [1]. Research of the last dec-
ades revealed the enormous impact of the microbiome 
on human health and wellbeing (see [2] for a review). 
Numerous factors have been identified that modulate 
the human-colonizing microbiome like diet, exercise, 
and animal contact (see [3] for a review). It is the com-
bination of the host’s genotype and its microbiome that 
together drive the host’s phenotype [4].

Understanding the mechanisms controlling the forma-
tion and function of microbial communities is essential in 
human biology. Standardization of endogenous and exog-
enous variables, such as genotype and environmental fac-
tors, is hardly achievable in larger experimental animal 
models and impossible in humans. Therefore, mice are 
consecrated as the most used laboratory animals due to 
their advantages for experimental work. They served in 
deciphering fundamental physiological and pathologi-
cal aspects in mammals. Available murine models range 
in complexity from simplified microbial communities, 
such as “Schaedler flora” [5], “altered Schaedler flora” [6], 
GM15 [7], Oligo-Mouse-Microbiota 12 [8], or human-
ized-microbiome models [9, 10] over specified pathogen-
free (SPF) laboratory mice [11], which are altered in a 
series of biochemical gut parameters [12], immunological 
[13] or anti-cancer fitness-promoting traits [14], to the 
more complex, wild mouse microbiota models [15].

From an evolutionary perspective, it seems unlikely 
that the host leaves microbial composition to chance. 
Extreme (genetically modified) genotypes affect the 
functionality of the immune system and thus contribute 
to changes in the composition of gut microbiota [16–
20]. Multiple quantitative trait loci (QTL) from specific 

genomic regions seem to contribute to the host tailoring 
of the microbiome [21–24]. Two factors, among other 
undefined loci, are the major histocompatibility complex 
(MHC; H-2 in mice), as demonstrated by the analyses 
of bacteria-derived cellular fatty acids [25] and IBD sus-
ceptibility-involved genes, such as caspase recruitment 
domain member 9 (Card9) [26]. Some studies showed 
genome-wide linkage with abundances of specific micro-
bial taxa such as Lactobacillus [21, 27] or Faecalibac-
terium prausnitzii [28], whereas others document the 
influence of the “host genotype” and the environment on 
the whole microbiome [29–31].

Researchers aware of the importance of the micro-
biome in the experimental work proposed to scientific 
journal editors a mandatory documentation of all factors 
that may influence the microbiome, such as host geno-
type, husbandry details, or experimental methods [4]. 
Factors like diet, bedding material, drugs, cage mates, or 
ventilation are relatively easy to control for. The control 
of factors, which we subsume as maternal legacy, like 
passage through the birth canal, weaning, coprophagy, 
and grooming is almost impossible or implies a signifi-
cant increase in resources. However, they are known to 
impact the microbiome and thus most likely impact the 
host phenotype [19, 31, 32]. One could even speculate 
that maternal legacy alone is the evolutionary process 
to vertically transmit a defined microbiome to offspring 
generations.

The central question remains open, namely which of 
the two factors maternal legacy or host genotype contrib-
ute (more) to the active shaping of a host’s microbiome?

A practical implication could be that strain differ-
ences from mice of alternative vendors would harmo-
nize under identical environmental conditions through 
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cross-fostering if maternal legacy was to dominate micro-
bial composition.

Existing literature is inconclusive about effect sizes 
of maternal legacy vs. host genotype. The vendor and 
genetic background, in terms of host genotype, seem 
to influence murine gut microbiota [33]. Nevertheless, 
studies using embryo transplantation and litter cross-
fostering in mouse rearing and housing document that 
rather environmental conditions and maternal legacy 
exert a dominant contribution in shaping microbiota 
composition. A drift of the microbiota to a host genotype 
and facility-specific composition seem to occur under 
the influence of these factors [34]. Also, authors of [35] 
assumed that the foster mother’s gut microbiota rather 
than the host genotype influence gut microbiota com-
position in early life [36], whereas the study of Korach-
Rechtman et  al. (2019) indicates dominance of host 
genotype over the maternal inoculation by cross-breed-
ing experiments [31]. Overall, authors of [37] account for 
the host genotype less than 20% of the gut microbiota 
variation in mice, whereas the findings of [38] suggest 
that in humans, the gut microbiome and host genotype 
are largely independent.

Numerous rodent studies that conclude on the influ-
ence of host genotype were performed either in immune 
defective phenotypes or were drawn secondarily to the 
main goals of the respective studies, often on highly 
related mice, which were purchased from commer-
cial vendors shortly before the beginning of the respec-
tive study. In addition, no natural course of microbiota 
colonization and transmission over the generations was 
followed; rather, artificial colonization with/or in asso-
ciation to antibiotics treatment was performed [39]. 
Moreover, most studies exclusively focused on the gut 
microbiome. Only recently, pioneering studies regard-
ing the influence of host genotype on the microbiome 
of other body sites such as the skin [40] and respiratory 
tract [41, 42] have been conducted in human and murine 
lung [43], while surveys, e.g., the genital tract, are still 
missing.

To disentangle the factors host genotype and mater-
nal legacy, we here obtained presumably microbial free 
two-cell stage embryos of two representative wild types, 
namely C57BL6/J (B6J, n = 42) and BALB/c (C, n = 57), 
and transferred a mix of embryos into six SPF hybrid 
recipient mice (RM), which were generated from B6J 
dams and C sires. Therefore, offspring started from the 
same microbiome, acquired through maternal legacy of 
RM.

We continued the experiment over five generations of 
separated breeding while minimizing impact of environ-
mental factors through housing in individually ventilated 
cages (IVC). For reference, we also sampled six SPF mice 

of each host genotype independently obtained from our 
mouse facility (Duesseldorf, Germany), housed in open 
cages instead of IVC, and bought from a commercial ven-
dor (Janvier, France).

To further dissect maternal legacy, we implemented 
three cage lineages per host genotype, i.e., strict inbreed 
lineages that never came in contact in the following gen-
erations. We applied 16S rRNA gene sequencing of colon 
content and the skin of the ear to obtain microbiome 
profiles of 334 mice in total. It was shown for immu-
nodeficient mice that the host genotype itself alters the 
microbiome and leads to profound metabolome systemic 
and not just local effects within the gut [44]. For systemic 
insights, we therefore collected blood serum to obtain 
metabolomic data.

Our data show that under controlled environmental 
factors, host genotype is the driving factor in microbiome 
composition over multiple generations in inbred labora-
tory mice. However, the maternal legacy effect is non-
negatable, especially in earlier generations. Our analysis 
also documents a host genotype-dependent increase of 
particular pathobiont microorganisms such as Akker-
mansia muciniphila, as well as host genotype-specific 
metabolome correspondence.

Material and methods
Mouse strains and husbandry procedures
The mice strains C57BL/6 J (B6J), BALB/c (C), and 
their F1 hybrid B6CF1 (RM) originated from the speci-
fied-pathogen-free (SPF) colony of the Central Unit for 
Animal Research and Animal Welfare Affairs (ZETT) 
Duesseldorf. They were free of all agents listed in Table 3 
of the FELASA recommendations for health monitor-
ing of rodents [11] and supplementary of Staphylococ-
cus aureus, Proteus spp., Klebsiella spp., Bordetella 
bronchiseptica, Bordetella pseudohinzii, Pseudomonas 
aeruginosa, Muribacter muris, and dermatophytes. The 
access to this microbiological unit was restricted to a few 
animal caretakers through a sit-over barrier system and 
complete change of clothes with sterile clothes consisting 
of suit overall, underwear, socks, shoes, face mask, head 
cover, and gloves. This unit was populated exclusively 
with mice strains hygienically sanitized by means of 
embryo transfer. For the experiment, the mice were kept 
in individually ventilated cages (IVC) filled with Shep-
herd’s™ ALPHA-dri® bedding sheets (Shepherd Special-
ity Papers, Kalamazoo, USA) and had access ad  libitum 
to autoclaved rodent chow (Ssniff, Soest, Germany) and 
acidified water. All cages were located in the same IVC 
rack during the whole period of the experiment and were 
housed under 12:12 h light/dark cycles, at a 22 ± 2 °C 
room temperature and 55 ± 5% humidity. All mice cages 
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were changed weekly with autoclaved fresh cages con-
taining the same bedding, food, and water.

Study design and sampling
To obtain B6J and C embryos, female mice were intra-
peritoneally superovulated using 7 IU PMSG for B6J and 
5 IU PMSG for C (Intergonan® 240 IE/mL, MSD Tierge-
sundheit, Unterschleißheim, Germany) and 7-IU hCG 
for B6J and 5-IU hCG for C (Predalon® 5000 IE, Essex 
Pharma GmbH, Waltrop, Germany) 48 h later, followed 
by mating with males of the same strain. On day 1.5 after 
hCG administration, embryo donors were sacrificed, 
their oviducts extracted, and the embryos at the two-cell 
stage flushed using M2 medium (Sigma-Aldrich, Munich, 
Germany) according to [45]. An average number of eight 
two-cell embryos of each B6J and C strain were trans-
ferred into the oviduct of each of the six pseudopregnant-
related B6CF1-recipient foster mothers (RM) used in this 
study as described previously [45]. The 6 RM were further 
placed in 3 individually ventilated cages, each containing 
2 of the RM, where they gave birth after approximately 
19 days to the mice parental (P) generation consisting 
of 16 B6J and 5 C mice (Fig.  1). The P mice males and 
females were weaned at the age of approx. 3 weeks and 
placed together in two male and two female cages until 
the age of approx. 7 weeks when they were either used for 
mating or placed in separate male or female cages until 
they reached the adult sampling age of 15 weeks when 
sampling occurred. Three days before mating, dirty bed-
ding originating from the males’ cages was transferred to 
the respective female’s cage in order to synchronize the 
ovulation. Three P generation breeding trios of one male 
and two females were settled for the B6J mice, whereas 
for the C mice, the only male available was mated for 3 
days with two of the C females and then transferred to 
the second C female cage. For the following generations, 
a breeding trio was settled from each previous breeding 
cage, except for the F2 generation of C strain, where two 
breeding trios were settled from a cage (Fig. 1). The exact 
cage location and lineage, the sex and the number of 
mice resulted per host genotype, and generation can be 
depicted in Fig. 1. In addition, 12 mice each (3 males and 
3 females of each B6J and of C strain respectively), origi-
nating from Janvier Labs (Le Genest-Saint-Isle, France) 

and ZETT Duesseldorf respectively, were included as 
controls. Duesseldorf controls were housed in open cages 
until sampling. Janvier controls were purchased at an age 
of 14 weeks and afterwards housed in IVC. The sampling 
occurred at the age of 15 weeks for all mice, except for a 
few singular breeding mother mice that still had to nurse 
for one or two further weeks and reached thus 16 or 17 
weeks at sampling. The age of 15 weeks was chosen since 
at this age the mice display a stable mature gut microbi-
ome [46].

Sample collection and DNA extraction
To harvest the samples, 15-week-old mice were eutha-
nized by bleeding in narcosis. The collected blood served 
for sera preparation. Next, approximately 2/3 of the left 
earlobe and the two to three most distal fecal pellets 
from the colon were harvested using sterile instruments 
and used for the analysis of the skin and gut microbiome 
respectively. All samples were placed into 1.5-mL sterile 
Eppendorf cups and immediately frozen at -80 °C until 
further use. All samples were collected between 8:00 and 
11:00 a.m. on several days. DNA extraction from colon 
pellets and skin was performed using the DNeasy Pow-
erSoil and DNeasy Blood & Tissue Kit (Qiagen, Hilden, 
Germany) respectively using the manufacturer’s protocol. 
In the final step, DNA was eluted in EB buffer (Qiagen), 
and the yield was measured by NanoDrop One (Thermo 
Fisher Scientific, Waltham, USA). Extracted DNA was 
frozen at -20 °C until further processing.

16S amplicon library preparation and sequencing
Genomic DNA samples used for 16S rRNA gene 
sequencing were quantified by photometric measure-
ment using NanoDrop One device (Thermo Fisher 
Scientific Inc.). Preparation of the 16S rRNA gene 
amplicon libraries for the Illumina MiSeq System was 
performed according to the Illumina 16S metagen-
omics protocol (part no. 15044223 Rev. B) sequenc-
ing the V3–V4 region of the 16S rRNA gene (primers: 
FWD:CCT ACG GGNGGC WGC AG, REV:GAC TAC 
HVGGG TAT CTA ATC C) with the change of the mate-
rial input to 1 µL of the sample volume. Two Illumina 
i5 and i7 8-bp barcodes were used for each sample 
for a 384 multiplexing schema. Final libraries were 

(See figure on next page.)
Fig. 1 Breeding strategy. We obtained C57BL6/J (B6J, n = 42) and BALB/c (C, n = 57) two-cell stadium embryos from donor mice. A mix of both host 
genotype embryos was transferred into six recipient dams of a hybrid host genotype B6CF1, such that each dam gave birth to pups of both host 
genotypes. Offspring (P generation) was separated by host genotype into six cage lineages (B1–3, C1–3). Inbreeding for generations F1 to F5 
always occurred within the same cage lineage (dashed lines). Gray dots indicate individually ventilated cages. Open squares and solid triangles 
indicate male and female mice, respectively, while blue icons indicate B6J and orange icons C host genotype, respectively. Last row gives numbers 
for control mice
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Fig. 1 (See legend on previous page.)
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analyzed for fragment length distribution with the 
Fragment Analyzer (Agilent Technologies, Inc.) using 
the HS NGS Fragment Kit (1–6000 bp) assay (DNF-
474). Concentrations were determined by fluorometric 
measurement using the Qubit fluorometer and a DNA 
high-sensitive assay (Thermo Fisher Scientific Inc.). 
Libraries were normalized to 2 nM, equimolar pooled, 
and subsequently sequenced on a MiSeq system (Illu-
mina Inc.) with a read setup of 2 × 301 bp by using a 
MiSeq Reagent v3 (600-cycle) Kit with three flow cells 
in total.

Statistical analysis
The base calling and simultaneous demultiplexing 
were done via bcl2fastq (v2.19.0.316), and primers 
were trimmed using cutadapt (v2.10, [47]). Cutadapt 
removes adapter sequences from high-throughput 
sequencing reads. Quality-controlled sequence data 
was imported into the Qiita study management plat-
form (https:// qiita. ucsd. edu/, hosted at UC San Diego, 
[48]) under study ID 13422. Through Qiita, we used 
QIIME (v1.9.1, [49]) to clip reads to regions above a 
Phred score of 3, drop reads containing N base calls, 
and trim reads to 150 bp. The generation of feature 
tables was performed by de novo amplicon sequence 
variant (ASV) determination using the Deblur approach 
(v1.1.0, [50]). Taxonomy for Deblur sequences was 
assigned via the q2-feature-classifier [51] of QIIME2 
(v2023.2, [52]) using the pre-trained Naive-Bayes clas-
sifier https:// data. qiime2. org/ class ifiers/ green genes/ gg_ 
2022_ 10_ backb one_ full_ length. nb. qza, which is based 
on full-length ribosomal sequences of Greengenes2 
[53]. As Greengenes2’s taxonomy currently lacks labels 
for mitochondria and chloroplasts, we classified ASV 
sequences against the older Greengenes (v13.8, [54]) 
database specifically ASVs assigned to “c__Chloroplast” 
or “f__mitochondria” as a pre-filtering. Low biomass 
skin samples have been controlled against “kitome” 
contamination [55] through Decontam [56] as sug-
gested [57]. We used Decontam as provided through 
QIIME2 version amplicon 2024.5 in “combined” mode 
and a threshold of 0.5.

In the following, the ASV feature table was used to 
determine the alpha and beta diversities using QIIME2 as 
well as differential abundance analysis. 

We used q2-fragment-insertion of QIIME2 (v2023.5, 
[58]) to phylogenetically place all Deblur sequences into 
the reference Greengenes 13.8 99% identity tree [54] to 
obtain a phylogeny for downstream phylogenetic aware 
alpha- and beta-diversity metrics, i.e., Faith’s phyloge-
netic diversity index [59] and weighted and unweighted 
UniFrac [60].

Alpha and beta diversity
We chose a rarefaction depth of 1000 reads per sample 
for skin samples and 6000 for gut samples by analyzing 
alpha rarefaction curves for the three metrics “observed_
features,” “Shannon,” and “Faith’s PD” using 10 iterations 
for every depth. These depths were best for represent-
ing the highest taxonomic diversity while losing the least 
number of samples in our dataset. Alpha diversity was 
calculated using the plain number of observed features 
(richness), Shannon index, Chao1, and Faith’s phyloge-
netic diversity index (Faith PD). Beta diversity was cal-
culated using the phylogenetic measure weighted and 
unweighted UniFrac, as well as the non-phylogenetic 
measure Bray-Curtis dissimilarity [61] and Jaccard-
Needham dissimilarity [62]. Dissimilarity was visualized 
as principal coordinate analysis (PCoA) in a 3D Emperor 
plot [63]. Significance between groups in alpha diversity 
was assessed by two-sided Mann-Whitney-Wilcoxon or 
Kruskal-Wallis tests and for beta-diversity group signifi-
cance with PERMANOVA using 9999 permutations, cor-
recting via the Benjamini-Hochberg approach.

Differential abundance analysis
Statistically significant differentially abundant taxa were 
identified using analysis of composition of microbiomes 
(ANCOM) as a QIIME2 plugin [64].

Joint analysis with Robertson et al. data
We obtained raw read files for [65] from NCBI’s BioPro-
ject with accession number PRJEB28381 and trimmed V4 
primers 515F (Parada) and 806R (Apprill) off the reads 
(cutadapt v2.10, [47]). Further downstream process-
ing (e.g., ASV calling, taxonomy assignments, filtering) 
was done identically to our dataset; see above. As both 
datasets target different variable regions (V4 and V3–V4 
for Robertson et  al. and ours, respectively), not a single 
ASV nucleotide sequence will be shared between both. 
We therefore limited alpha- and beta-diversity analy-
sis to phylogenetic metrics, which indirectly merged the 
datasets by phylogenetically placing ASVs into the same 
Greengenes 13.8 99% identity tree [54]. The joint feature 
table was rarefied to 6000 reads per sample.

Metabolome analysis by GC–MS
Ten serum samples from the generations F3 and F4 
belonging to each B6J and C host genotype were chosen 
for GC-MS-based metabolic profiling, following previ-
ously established protocols [44]. Metabolite extraction 
was conducted with minor modifications to the method-
ology described by [66]. In brief, 1 mL of a -20 °C cooled 
extraction solution composed of acetonitrile (ACN)/
isopropanol (IPA)/water  (H2O) (3:3:2, v/v/v) was mixed 

https://qiita.ucsd.edu/
https://data.qiime2.org/classifiers/greengenes/gg_2022_10_backbone_full_length.nb.qza
https://data.qiime2.org/classifiers/greengenes/gg_2022_10_backbone_full_length.nb.qza
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with 30 µL of a 25-µM internal standard (ISTD) solu-
tion (ribitol and N,N-dimethylphenylalanine). Then, 20 
µL of sample was added to the extraction solution, vor-
texed for 10 s, shaken for 5 min, and then centrifuged for 
2 min at 14,000 rcf at 4 °C. Next, two 450-µL aliquots of 
the supernatant were transferred to new tubes, and 500 
µL of an ice-cold solution of ACN/water (50:50, v/v) was 
added to remove any excess protein. After additional cen-
trifugation for 2 min at 14,000 rcf, the supernatant was 
transferred to a pre-cooled tube and dried by vacuum 
centrifugation.

The dried sample was reconstituted in 150 µL of the 
extraction solution and dried again via vacuum cen-
trifugation after transfer into a glass vial. The sample 
was derivatized with methoxyamine hydrochloride 
and N-methyl-N-(trimethylsilyl) trifluoroacetamide 
as described in [67]. After incubation for 2 h at room 
temperature, 1 µL was injected into a GC-MS system 
(7890A GC and a 5977B MSD, Agilent Technologies), 
and chromatography was performed as described in [68]. 
Metabolite identification was performed on two levels. A 
quality control (QC) sample containing a mixture of tar-
get compounds was included as a reference to identify 
target compounds in the sample based on mass spectra 
similarity and retention time (annotation level: refer-
ence). In addition, the AMDIS software (http:// chemd 
ata. nist. gov/ mass- spc/ amdis/ v2.72, 2014) was used for 
deconvolution of mass spectra of target peaks before 
comparing spectra to the NIST14 Mass Spectral Library 
(https:// www. nist. gov/ srd/ nist- stand ard- refer ence- datab 
ase- 1a- v14). Matches with more than 80% mass spectra 
similarity were assigned accordingly (annotation level: 
NIST match). Peaks were integrated using the software 

MassHunter Quantitative (v b08.00, Agilent Technolo-
gies). For relative quantification, metabolite peak areas 
were normalized to the peak area of the internal standard 
ribitol.

Triglycerides quantification
Triglycerides in serum were recorded using the colori-
metric Triglyceride Quantification Kit (catalog number 
MAK266, Sigma-Aldrich, Darmstadt, Germany) accord-
ing to manufacturer’s protocol.

Results
The host genotype overrides the maternal legacy effect 
over generations in constant environments
Conflicting reports about the dominance of host geno-
type or maternal legacy on microbial composition, and 
the suggestion of Robertson and co-authors [65] to first 
generate F2 littermates for maximal microbial homoge-
neity before conducting genotype-phenotype experi-
ments, let us set out our breeding experiment in which 
we followed microbial composition of two commonly 
used wild-type strains across six generations (see Fig. 1).

Our microbial gut data show a robust overriding impact 
of host genotype over maternal legacy for constant envi-
ronments. Interestingly, this effect is not yet pronounced 
in the P generation (p = 0.08, two-sided Mann-Whitney-
Wilcoxon test) but in all that follow (Fig.  2A: p < 0.01, 
except F5 and Fig. 2B: p < 0.03, except p = 0.91 for P). The 
unproportionally smaller number of B6J mice in genera-
tion F5 (10.9 mice on average but only 0, 9, and 6 mice 
in F5 for cage lines B1, B2, and B3, respectively) led to a 
significantly smaller sampled microbial diversity (Figure 
S1A: p < 0.014 for B2, p < 0.004 for B3) and is primarily 

Fig. 2 Trajectory of host genotype gut microbiome differentiation. A Y-axis is Faith’s phylogenetic diversity. X-axis is mouse generation or control 
group. Labels on top list numbers of individual mice (i), cages (c), and cage lineages (l) of which samples were aggregated by color: RM, B6J, and C 
in red, blue, and orange, respectively. B Distances between 6 RM and 303 breeding experiment samples, grouped by host genotype (B6J = blue, 
C = orange) in terms of weighted UniFrac beta diversity. Green band indicates distance between host genotypes, not to RM. Gray dashed line 
is the mean pairwise distance between individuals housed in the same cage, i.e., between biological replicates; 103 cages with 268 individuals 
and 2.6 individuals per cage on average were considered. Magenta dashed line is the mean distance of individuals from two different cages 
of the same host genotype, same cage lineage and same generation; 1323 pairs of individuals (i-i) were considered with 42.7 i-i pairs on average 
per cage lineage and generation; considering housing, there are 141 different cage-to-cage (c-c) pairs with 4.4 c–c pairs on average per cage 
lineage and generation. C Distances between 24 control and 303 breeding experiment plus six RM samples in terms of weighted UniFrac. We 
grouped control samples into host genotype and Janvier vs. Duesseldorf, such that each group consisted of six mice housed in two cages. D 
Comparison of similarities between true dam to offspring (= true dams), dam to mice of same generation, other cage lineage (= other cage 
lineage), and dam to same generation different host genotype (= other genotype) in terms of unweighted UniFrac. Top label indicates the number 
of pairwise distances. E Impact of maternal microbiome on offspring microbial composition in terms of source tracking for true dam to offspring 
(= true dams) and dam to mice of same generation, other cage lineage (= other cage lineage), and other host genotype (= other genotype). F Joint 
analysis with Robertson et al. data. The y-axis is unweighted UniFrac. First three boxes summarize pairwise distances between our C and Robertson’s 
mice, our B6J and Robertson’s TAC, and our B6J and Robertson’s JAX mice in orange, blue, and red, respectively. Next four boxes relate our B6J mice 
with Robertson’s P1, F1, and F2 generation, where the latter is split into maternal JAX and maternal TAC mice. Subsetting Robertson’s F2 maternal 
JAX mice, the last seven boxes summarize distances to our six generations and B6J controls. We used Mann-Whitney-Wilcoxon for all statistical tests 
with Benjamini-Hochberg correction for multiple testing (ns: not significant, ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05)

(See figure on next page.)

http://chemdata.nist.gov/mass-spc/amdis/
http://chemdata.nist.gov/mass-spc/amdis/
https://www.nist.gov/srd/nist-standard-reference-database-1a-v14
https://www.nist.gov/srd/nist-standard-reference-database-1a-v14
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prohibiting detection of the above mentioned effect. Dis-
playing the data as a PCoA of weighted UniFrac distances 
reveals two distinct clusters belonging to each of the host 
genotypes respectively (Fig. 3). Although considered wild 
types, both host genotypes have different immune system 
responses, which probably drives the differential micro-
bial composition in the gut, as the main host-microbi-
ome interface in mammals. The significantly lower alpha 
diversity of C animals persists even when correcting for 
the number of founding sires in the P generation: three 
vs. one for B6J and C, respectively (Figure S2).

The RM mice are generated by mating female B6J with 
male C mice. The high microbial similarity between host 
genotypes at the P generation (no significant difference, 
see above) seems to favor the maternal legacy effect; 
the weighted UniFrac distance between host genotypes 
(green line in Fig. 2B) is lower than the average distance 
between any pair of mice from different cages within the 
same cage lineage (this comprises host genotype, magenta 

dashed line). In accordance, the RM microbiome is more 
similar to B6J Duesseldorf controls than to C Duesseldorf 
controls (Fig.  2C, p = 0.042, two-sided Mann-Whitney-
Wilcoxon test). Due to open instead of individually venti-
lated cages, control mice were exposed to a more relaxed 
environment and might therefore lack significant differ-
ences in alpha diversity (right part of Fig. 2A: p = 0.80 for 
Duesseldorf and Janvier controls, two-sided Mann-Whit-
ney-Wilcoxon test). However, controls show strong sepa-
ration by host genotype in beta diversity (p < 0.007 for all 
four tested metrics, PERMANOVA test with 9999 per-
mutations). The microbiome between RM and mice of 
the P generation is significantly different (PERMANOVA 
tests with 9999 permutations on weighted UniFrac: 
p < 0.016), which might result from the relatively invasive 
embryo transplantation with preceding skin disinfec-
tion as an environmental distortion. This would explain 
the drop in alpha diversity, although not being significant 
(p = 0.080, two-sided Mann-Whitney-Wilcoxon test). To 

Fig. 3 Gut microbial diversity. PCoA of weighted UniFrac distances for 333 colon samples. A Colored by host genotype and cage lineage. B 
Rotation of A along Axis 2. C Same PCoA as in A, but color here indicates generation. D Rotation of C along Axis 2
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explain the significant microbial dissociation in all fol-
lowing generations (F1 to F5) though, we must favor host 
genotype over maternal legacy, especially since microbi-
omes started quite homogeneously in the P generation 
but drifted apart from F1 onwards, while we kept the 
environment constant. The relatively constant trajectory 
(blue line = B6J in Fig. 2B) and the continuously increas-
ing difference (orange line = C in Fig. 2B) emphasize that 
the microbiome of the hybrid RM mice is dominantly 
that of B6J mice, and that there must be an active shaping 
in the C animals.

Despite the clear dominance of host genotype, envi-
ronmental aspects easily exceed this effect, as can be 
seen by the significantly higher alpha diversity (Fig. 2A, 
p = 0.0013) of Janvier control mice, which were bought 
from a commercial vendor and only acclimatized for 1 
week in our local facility prior to sampling at 15 weeks 
of age and the generally larger beta-diversity distance of 
mice from our breeding experiment with Janvier con-
trols, compared to Duesseldorf controls (Fig. 2C: dashed 
vs. solid lines, respectively). The environment is probably 
furthermore a limiting factor for the degree of host gen-
otype-specific tailoring of the microbiome. Our narrow 
environment (autoclaved cages, autoclaved rodent chow 
and autoclaved bedding, acidified water, individually 
ventilated cages) provided a restricted set of microbes 
the hosts could source from, such that host genotype 
differences peak around F2 and probably show intergen-
erational cycling thereafter [65, 69]. This would explain 
the flips in distance of C to control mice (orange lines in 
Fig. 2C), whereas distances of B6J to control mice remain 
relatively stable as only the C host genotype actively tai-
lors its microbiome away from the shared starting point, 
which is already B6J like, in the P generation.

Exploring family relations confirms the presence 
of a maternal legacy effect
The observation of C mice’s microbiome distance to RM 
increasing faster and stronger than between B6J mice and 
RM is a result of a maternal legacy effect as the mothers 
of the RM mice were of the B6J host genotype. In fact, 
RM samples are closer to B6J than to C Duesseldorf con-
trols (p = 0.042, two-sided Mann-Whitney-Wilcoxon test, 
Fig. 2C).

As we established three cage lineages per host geno-
type, we could investigate maternal legacy in detail by 
comparing microbial distances within true family rela-
tions, i.e., individuals with their true dams, and nonfamily 
relations, i.e., distances to dams of other cage lineages 
but the same host genotype and last, distance to dams 
from the other host genotype (Fig.  2D). Except for the 
F1 to F2 relation in C, we observe significant differences 
between the three categories with true dams showing 

the smallest distances towards their children. Using the 
SourceTracker [70] tool to estimate seeding capacity of 
alternative microbial sources to compose the offspring’s 
microbiome confirms that the true dams microbiome has 
the strongest impact (Fig. 2E).

The maternal legacy effect might explain the dip in 
alpha diversity of B6J mice in generation F5 as well. 
Plotting the diversity by cage lineage (Figure S1) shows 
that samples in generation F4 of cage lineage B1 (blue) 
have exceptionally high alpha diversity, compared to 
B2 (orange) or B3 (green), quantified as Faith’s PD or as 
number of observed features. Although B3 significantly 
loses alpha diversity in F5, the mean across cage lineages 
in F5 also unproportionally suffers from a lack of B1 sam-
ples, with presumably high(er) diversity. This indicates 
that diversity can be crucially impacted by maternal leg-
acy per generation.

Effect size analysis on gut data confirms dominance 
of host genotype. Mouse generation and maternal leg-
acy have smaller but significant effect sizes, which has 
been reported previously, pointing out the importance 
of the mother in murine microbiome experiments 
(Fig. 4).

Joint analysis with independent data corroborates effects 
of host genotype and maternal legacy
In [65], authors investigated whether cohousing or F2 lit-
termates, which we consider as the amalgamated effect of 
host genotype and maternal legacy, would lead to a more 
homogeneous microbiome prior to performing murine 
studies. Obtaining mice of very close host genotypes, 
namely the substrains C57BL6/J and C57BL6/N from 
two different vendors Jackson Laboratories (JAX) and 
Taconic Farms (TAC), respectively, they concluded that 
F2 littermates had a significantly higher impact on micro-
bial standardization than cohousing. Thanks to published 
raw sequences from colon samples and prompt support 
with metadata (personal communication), we were able 
to perform a joint analysis.

We quantified the microbial distances between our C 
host genotype (n = 126 mice of generations P to F5 and 
controls) and Robertson’s parental and littermate mice 
of both vendors (n = 28 TAC + n = 27 JAX), which are 
of a B6-like host genotype, as the orange box in Fig. 2F. 
These distances are significantly larger than distances 
between our closely matching B6J (n = 201 mice, p≪ 
 10−4) host genotype and Robertson’s TAC (n = 28, blue 
box, p ≪  10−4) or JAX (n = 27, red box, p≪  10−4) mice. 
This emphasizes the strong impact of host genotype 
on microbial composition. The decrease in distances of 
host genotype matching mice between different vendor-
dependent sub-strains (blue to red) aligns to the fact 
that our mice originate from a Jackson Laboratories 
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purchase. This difference is significant and interestingly 
of similar magnitude as mismatching host genotypes 
(orange to blue). Practically, this could imply that not 
only the genotype of the utilized mice but also the sub-
strain must be normalized for future murine microbi-
ome experiments.

The maternal legacy effect probably complicates mat-
ters. Robertson et  al. generated F2 hybrids of vendor 
sub-strains in two fashions: ♀JAX used JAX dams and 
TAC sires, while ♀TAC used TAC dams and JAX sires. 
Comparing distances between our n = 201 B6J mice and 
Robertson’s n = 8 F2 ♀JAX samples (sixth box in Fig. 2F) 
or Robertson’s n = 9 F2 TAC samples (seventh box in 
Fig.  2F) illustrates that maternal legacy shapes signifi-
cantly different microbiomes (p ≪  10−4). As we employed 
a pure B6J host genotype of dam and sire for breeding, 
it is convincing that distances to Robertson’s F2 ♀JAX 
samples are significantly smaller than to F2 ♀TAC. This 
finding lets us specify the above recommendation to nor-
malize or at least record female lineage for murine micro-
biome experiments.

Significantly decreasing distances from P1 (fourth 
box) to F1 (fifth box) and F1 to F2 (sixth box) recapitu-
lates Robertson’s recommendation to generate F2 mice 
prior to experimentation. Furthermore, stratifying Rob-
ertson’s 27 JAX mice (but not the 28 TAC mice) by gen-
erations (fourth to sixth box in Fig. 2F) shows that they 
indeed become significantly more similar to our n = 201 
B6J mice over time — in accordance with our previous 
observations. Despite marked biological and technical 
differences between Robertson’s and our microbiome 
profiling, it is interesting to see that our B6J samples 
become significantly more similar (except F3 and F5) to 

Robertson’s F2 JAX samples with preceding generations 
(seven rightmost boxes in Fig.  2F). This might point to 
a universal host genotype-specific core microbiome and 
warrants further investigation. Due to different vari-
able 16S rRNA gene regions, we assume incompatible 
taxonomic assignments (cf. tremendous shifts in Bac-
teroidota/Firmicutes_A ratio in Figure S3) and there-
fore refrain from further investigations on taxonomic 
features.

Taken together, we concur with Robertson et al. that F2 
littermates should become the gold standard for micro-
bial studies, and we add that host genotype down to a 
level of substrain together with maternal legacy must be 
controlled for.

Skin microbiome shows effects of “host genetics” but lacks 
maternal legacy
We sampled the skin of the left earlobe of all mice in 
addition to the previously discussed colon samples by 
processing the whole tissue in order to also capture sub-
epidermis bacteria, e.g., in hair follicles [71]. Lower bio-
mass led to fewer reads, and, subsequently, more samples 
were lost through quality control, invalidating application 
of statistical tests due to low sample numbers for some of 
the following comparisons.

As in the gut, host genotype shapes the skin microbial 
communities in a genotype-dependent manner (Fig-
ure S4), although the results are not as decisive (Fig. 5B: 
two-sided Mann-Whitney-Wilcoxon tests: generation P 
(p = 0.057), F1 (p = 0.201), F2 (p = 0.074), F3 (p = 0.007), 
F4 (p = 0.392), F5 (p < 0.001)). The RM skin microbiome 
flips between being more similar to B6J and C three times 
throughout the P to F5 generations. Using control mice 

Fig. 4 Effect sizes analysis. Forward step redundancy analysis with a linear model composed of host genotype, generation, sex, and cage lineage 
(= maternal legacy) on Bray-Curtis distances
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as reference instead (Fig. 5C), the skin microbiome seems 
to be more similar to B6J for all but the P generation. 
Interestingly, alpha diversity (measured as Faith’s PD, 
Fig. 5A) is never significantly different across any genera-
tion; this is also true for the alternative metrics “Shannon 
diversity,” “Chao1,” and “observed features,” i.e., the raw 
number of different ASVs.

We were not able to measure a maternal legacy effect 
in the skin samples, neither by comparing alpha diversity 
(Figure S5), beta diversity (Fig. 5D), nor by source track-
ing (Fig. 5E). Again, low sample numbers prohibit statisti-
cal testing, but microbial alpha diversity between Janvier 
and Duesseldorf controls seem to be markedly different 
(Fig. 5A), pointing to a stronger “environmental” impact 
on microbial composition.
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Due to the cohousing of mice and their social nature, 
we cannot rule out the possibility of microbes from 
the gut transferring to the skin through factors like 
coprophagy and mutual grooming (cf. Figure S6 for 
gut/skin differences). Using five chow and five bedding 
control samples of the lots used for mice housing in 
addition to gut microbiome samples, stratified by host 
genotype and generation as “sources,” we quantified the 
contribution of community assembly in the skin (“sink”) 
via source tracking (Figure S7). Note that different read 
coverage between sinks and sources likely skews results. 
The source tracking analysis shows that the skin micro-
bial community is only composed of 6% on average of 
microbes found in host genotype matching gut samples 
of the same generation. Microbes from the “opposite” 
host genotype gut microbiome account for negligible 1% 
on average. Cage bedding material (5%) and mice chow 
(16%) had similar or approx. threefold stronger impact 
on skin microbiome assembly, whereas the huge major-
ity of community composition remains unknown (68%), 
which might actually represent the “true” skin microbi-
ome. We conclude that environmental effects dominate 
the skin microbiome with clear imprinting of host geno-
type tailoring but no detectable maternal legacy effects.

Select taxa like A. muciniphila are linked to host genotype 
in both gut and skin microbiomes
Bacteria of the phyla Bacteroidota (75.13%) and 
Firmicutes_A (17.73%) dominate the baseline gut 
microbiota, whereas the Proteobacteria (2.28%) play 
a subordinate role (Figure S8A). In contrast, the phyla 
Firmicutes_D (45.88%) and Proteobacteria (20.53%) 
make up the majority of skin microbiota, whereas the 
Bacteroidota (12.32%) were much less abundant (Figure 
S8B). The taxonomic composition at genus level is pre-
sented in Fig.  6A and Figure S8C for the gut and skin, 
respectively. Both host genotypes shared most of the taxa 
in both gut and skin microbiomes over the generations 
and cage lineages. However, singular genera occurred 
preferentially only in B6J or C in the skin, as well as in 
combinations of generations or cage lineages in both the 
gut and skin (Figures S5 and S6). Collapsing the 946 gut 
ASVs to 102 named species level, ANCOM found 33 spe-
cies to be significantly differentially abundant between 
B6J and C host genotypes, of which 21 had very low 
abundances (Fig. 6B). Higher abundance of three species 
of the Bacteroides genus in C mice and higher abundance 
of six species of the Muribaculacea family, Parasutte-
rella, Ruminiclostridium, Eubacterium siraeum, and A. 
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muciniphila in B6J mice, suggest a host genotype-specific 
enrichment of particular taxa. Stratifying the relative 
abundance of A. muciniphila per generation (Fig.  6C) 
shows an equally high abundance in the RM foster moth-
ers, corroborating that the host genotype-dependent 
shaping of the gut microbiome works through modula-
tion of individual taxa transferred by the mother via 
maternal legacy.

Blood serum metabolites correlate with host genotype 
and its colonizing gut microbiome
We quantified serum triglycerides in all 333 mice, to fur-
ther investigate host and microbiome interaction. Inter-
estingly, we found the same host genotype-dependent 
correlation as with the gut microbiome, namely very sim-
ilar triglycerides levels (p ~ 0.96, two-sided Mann-Whit-
ney-Wilcoxon test) between RM and B6J mice (Fig. 7E), 
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and significantly different (p < 0.0005) levels between 
RM and C mice. However, as triglyceride serum levels 
are already significantly different (p < 0.009) between RM 
and C in the first generation (P) after embryo transfer, a 
generation for which we could not detect microbial dif-
ferences, we conclude that triglyceride levels are directly 
controlled by host genotype which in turn might help in 
shaping the microbiome.

It has been previously reported that the blood serum is 
a means to communicate gut microbial differences into 
the host organism. We therefore measured 41 serum 
metabolites via GC–MS of 10 selected mice of B6J and 
C host genotypes each (Fig.  7A). To capture temporal 
changes, we sampled mice of the generations F3 and F4 
for which we found pronounced microbial differences. 
To exclude maternal legacy, we intentionally sampled dif-
ferent cage lineages in both generations, i.e., B2, C3 and 
B3, and C2 in F3 and F4, respectively. Quantified as Bray-
Curtis pairwise distances, we found significant (p = 0.02, 
PERMANOVA with 999 permutations) differences 
in serum metabolite profiles between host genotypes 
(Fig.  7B). Closer inspection via dsFDR found 6 out of 
the 41 metabolites to be differentially abundant between 
host genotypes (Fig. 7D). From our limited metabolome 
data, we can only speculate about directionality, but 
the observed differences might be a direct result of gut 
microbial metabolite production, which penetrates into 
the host’s bloodstream. We could not detect differences 
(p = 0.52, PERMANOVA test with 999 permutations) 
between generations F3 and F4 (Fig. 7C).

Discussion
The host genotype shapes its host’s microbiome
To what extent the host genotype affects the microbiome 
composition, and whether this effect is general or impacts 
only certain taxa, is still subject to debate. The littermates 
are regarded as gold standards in microbiome standardi-
zation of experimental groups [65]. The immune system 
dwells with the microbial world, and extreme immune-
altered host genotypes clearly influence the composition 
and diversity of the gut microbiome [16–18, 20]. Never-
theless, studying the impact of unmodified host geno-
types on the microbiome is more difficult, because the 
effects are usually softer and cannot be directly attributed 
to particular engineered genes. However, the contribu-
tion of particular genes or genomic quantitative trait loci 
(QTL) to the microbiome tailoring [40, 72] or associa-
tions to microbial taxonomies and especially to particular 
genera such as Bifidobacterium has been demonstrated 
[73, 74]. The host genotype possibly acts on the microbi-
ome by the innate and adaptive immune systems, which 
sequentially shape the gut microbiota, lipid metabolism, 
and stat3 phosphorylation [75], and thus applies different 

evolutionary within-host selection forces to the micro-
bial communities [76]. The two mouse strains B6J and C 
differ substantially in their immune responses to various 
infectious agents and are seen as prototypes for Th1 and 
Th2 immune response, respectively [77, 78], which may 
induce through microbiome-immune system interaction, 
different microbial communities [79].

Our approach studies whether differences in the 
microbiome can occur over generations in littermates 
of different host genotypes (B6J and C) in a constant 
environment, after a natural course of colonization with 
a common microbiome of B6CF1-recipient mothers. 
Moreover, the two main microbiome ecological niches, 
the gut and the skin, are considered, since knowledge on 
body sites other than gut is currently sparse.

We demonstrated that the host genotype essentially 
contributes to the active shaping of the gut microbiome 
and has a powerful influence on the host’s metagenome. 
This influence is exerted both directly through its stable 
genome, and in addition indirectly through tailoring of 
the flexibel composition of microbes that colonize the 
host. Despite the limitations in the profiling of the skin 
microbiome mentioned below, it seems that role of the 
host genotype is less decisive for the formation of the 
skin microbiome, which might be rather environmental 
dependent. Since the host genotype is heritable, this is an 
important factor in the microbiome evolution over the 
generations in spite of possible changes in the environ-
ment [80, 81].

Interestingly, we observed that the microbiome of our 
B6J mice was more similar to Robertson’s B6J than to 
Robertson’s B6N mice despite marked spatiotemporal 
(2019 vs. 2022, Canada vs. Germany), biological (sam-
pling at 15 vs. 8 weeks of age, acidified vs. nonacidified 
water, cages changed weekly vs. bimonthly, commercial 
pelleted food vs. autoclaved chow), and technical (dif-
ferent technicians, V34 vs. V4 16S rRNA gene region, 
different sequencing centers) differences. This finding 
sustains that host genotype differences at substrain level 
(B6J vs. B6N) are still enough to produce host genotype-
related shaping of the gut microbiome and might point 
to a universal host genotype-specific core microbiome, 
which warrants further investigation. Despite the clear 
dominance of host genotype, environmental aspects 
easily affect the microbiome tailoring, as can be seen by 
the significantly higher alpha diversity of Janvier con-
trol mice compared to Duesseldorf mice (Fig.  3A). The 
environment is probably a limiting factor for the degree 
of host genotype-specific tailoring of the microbiome in 
our experiment. Thus, the environment and host geno-
type decisively influence the composition of gut murine 
microbiota [33].
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Whether or not the host genotype differences in the 
skin microbiome of the earlobe are actively tailored by the 
mice or is an indirect reflection of the active tailoring of 
the gut microbiome with subsequent spreading of these 
microbes to their skin cannot be unambiguously answered 
from our data. Fewer viable bacteria than predicted by 
bacterial DNA profiles colonize the skin surface [71]. It is 
plausible that bacterial environmental noise might impact 
the recording of the skin microbiome. Nevertheless, the 
environmental noise should partially originate from the 
viable skin-associated bacteria that are predominantly 
located in hair follicles and other cutaneous invaginations 
[71] and correlate taxonomically. Our analysis included 
the hair follicle and invaginations by including the whole 
ear lobe skin and not only bacteria from the upper lay-
ers of the epidermis. Moreover, since mammalian skin is 
a highly specialized habitat, capable of strong selection 
from available species pools [82], filtering thus probably 
occurs by host own forces and shapes the pool of bacte-
ria that lead to this type of contamination. The influence 
of environmental noise on the microbiome could be par-
tially reduced by the RNA-based profiling as a preferred 
screening method [82]. Nevertheless, even a RNA-based 
profiling still records the living contaminants such as the 
ones acquired by coprophagy or from cage environmen-
tal sources such as bedding/food. Although we used a 
DNA-based profiling, the source tracking analysis shows 
that the impact to which the environmental contaminants 
drive microbial composition of the skin samples plays 
only a subordinate role (Figure S7), implying a host geno-
type active tailoring also in the case of skin microbiome 
but to a much lower extent as for the gut. The interactions 
between the host immune system and skin are presumed 
to be much less intensive. External skin is in general more 
prone to environmental conditions and thus much harder 
to control for.

The host genotype also shapes its metabolome
Multiple health and disease markers are correlated with 
the composition of the gut microbiome in humans [83]. 
In addition, the human gut microbiome affects the host 
serum metabolome and is linked to insulin resistance [84].

Using GC-MS-based metabolomics, we demonstrated 
differential expression and abundances of serum metabo-
lites among selected B6J and C mice. Our findings indi-
cate that the differences in microbiome could modulate 
together with the host genotype the expression of sys-
temic markers (see Fig. 7).

The host genotype enriches specific microbial taxa
Analysis of the taxa variation between B6J and C mice 
in our study revealed that particular taxa were enriched 
by host genotypes. Interestingly, [85] observed 22 taxa to 

have a significantly higher abundance in B6J than C mice, 
including Akkermansia and Ruminococcus. (We assume 
equivalence between genera Ruminiclostridium and 
Ruminococcus in our data, as 99.6% of Ruminiclostrid-
ium reads were classified as Ruminococcus when using 
Horne et  al. outdated GreenGenes version.) The similar 
enriched abundances of Akkermansia and Ruminococ-
cus in both studies, regardless of the experimental design, 
suggest that the gut environment of B6J but not of C mice 
is auspicious for these taxa. This may be due to increased 
availability of niche energy source Muc-2 in B6J, since A. 
muciniphila has the ability to degrade Muc-2 O-glycans 
in vitro [86]. A. muciniphila is an important pathobiont 
influencing numerous animal experimental phenotypes 
and accounts for 1–5% of the gut microbial community 
in healthy human adults, being a marker of a healthy 
microbiome and increasing the integrity of the intestinal 
barrier in both humans and mice [87]. There are obvi-
ous relationships between A. muciniphila and chronic 
inflammatory metabolic diseases such as type 2 diabetes, 
obesity, and IBD [88–90]. Interestingly, A. muciniphila 
accounted for up to 9% of the gut microbiota of the B6J 
but not of the C mice of our study (Fig. 6C).

Overall, most of the microbial genera were shared 
by both host genotypes and inherited overall genera-
tions (Fig.  6A), although differential taxa abundances 
occurred between host genotypes (Fig. 6B), whereas sin-
gular genera were present only in some host genotypes, 
cage lineages, and generations. Moreover, particular 
genera jumped over some generations, probably under 
the detection limit, and reappeared in a later generation 
(Figures S9 and S10).

The maternal legacy imprints the microbiome
The intergenerational changes recorded in our data are 
in accordance with previous studies. Minor changes of 
intestinal microbial composition and/or function across 
generations  were previously reported in  [69] and [65], 
when inbred mouse strains were transferred into new 
facilities. Moreover, such studies suggest that even the 
more resilient wilding’s gut microbiota [15] are expected 
to change as animals are housed under laboratory con-
ditions [91]. An expected host genotype independent 
finding was thus the cage lineage specificity, emphasiz-
ing the role of maternal legacy in microbiome heredity 
(Figs.  2A, 3D and E) similar with previous studies [92]. 
Importantly, maternal legacy does not necessarily mean 
maternal microbiome if the male remains in the female 
cage during pup rearing favoring also the paternal hori-
zontal transmission of microbial taxa [65]. Overall, we 
here documented by microbiome source tracking that 
the maternal legacy and the dam itself are responsible for 
most of the gut microbiome transmission to the offspring 
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(Figs.  2E and 4E). In our study, maternal legacy repre-
sents the second most important endogenous factor con-
tributing to the shaping of the gut microbiome after host 
genotype effects.

The host genotype is dominating maternal legacy, which 
both shape the host’s microbiome
Multiple studies attribute the host genotype a certain 
degree of influence on the gut microbiome [29, 30, 37], 
whereas others attribute to the host genotype a second-
ary role [34, 36] or no importance in microbiome shap-
ing [93] at all. The authors of [38] examined the host 
genotype and microbiome data from 1046 healthy human 
individuals with several distinct ancestral origins who 
share a relatively common environment and found that 
the gut microbiome is not significantly associated with 
genetic ancestry, concluding that host genotype has a 
minor role in shaping the microbiome composition. Nev-
ertheless, a narrow standardization of human individuals 
to a level similar to mice studies concerning host geno-
type (inbreeding) and environmental conditions is not 
achievable.

Previous work to disentangle the impact of host geno-
type and maternal legacy on the composition of offspring 
microbiome only sampled the first offspring generation 
[33, 34, 37]. Since no significant microbial difference 
could be detected after embryo transfer, cross-fostering, 
or cohousing, exactly as in the microbial profiles in our 
P generation, authors rightfully concluded that maternal 
legacy dominates any “host genetics” effects, if present at 
all. Interestingly, a dominance of the host genotype over 
the maternal inoculation was also documented by cross-
breeding of inbred mice [31]. However, both scenarios 
were based on a temporally limited observation.

The straight experimental design of our study, span-
ning seven generations of mice, with identical exogenous 
parameters regardless of the endogenous host genotype 
dichotomy, clearly shows that microbial differences man-
ifest in the F1 generation and further increase over time, 
at least for constant environments. We therefore argue 
that our data is compatible with previous contradicting 
findings; however, our longer temporal sampling suggests 
the opposite conclusion, namely that “host genetics” 
dominates maternal legacy, which for itself, but to a lesser 
extent, is also acting in tailoring the microbiome. Accord-
ing to a forward step redundancy analysis on Bray-Curtis 
dissimilarities, host genotype turned out to be the main 
driver of gut microbial diversity with an effect size of 
0.312, followed by generation (0.100), “maternal legacy” 
(0.04205), and sex (0.013) (Fig.  4). The weak signal on 
skin microbiome indicates that the microbiomes of dif-
ferent anatomical sites are driven with different power by 
intrinsic and extrinsic influences such as host genotype 

and environment. The remaining charred size effects for 
the microbiomes were possibly driven by the common 
environmental factors in this study. It is reasonable at this 
time point to hypothesize that the gut microbiome as an 
“intern” microbiome, without strong environmental con-
tact, is either prone to changes by host own factors such 
as host genotype, whereas microbiomes with high envi-
ronmental contact such as the skin microbiome appear in 
this study more environmentally dependent.

Outlook
The implication of the host genotype in shaping micro-
bial communities of further body sites such as of the 
genital and respiratory mucosa should be addressed in 
the future. Future research may also document whether 
the microbiome tailoring by the host genotype can 
explain why some mice strains are more suitable for par-
ticular experimental models than others. For example, 
it would be interesting to study whether the host geno-
type-dependent enrichment of the same particular taxa 
occurs independently in multiple facilities or whether 
the A. muciniphila-dependent phenotypes could be 
recapitulated in mice strains that behave refractory to A. 
muciniphila enrichment such as C mice. Overall, the host 
genotype-related shaping of the gut microbiome points 
to the existence of a universal host genotype-specific core 
microbiome in inbreed laboratory mouse strains that 
warrants further investigation.

Conclusion
Our results conclude that microbial communities at dif-
ferent body sites are driven by different endogen and 
exogenous factors. While the host genotype strongly 
influences the active shaping of the gut microbiome, it 
appears that the skin microbiome is more prone to envi-
ronmental conditions. Although the microbial genes 
clearly outnumber genes directly encoded by the host, 
we propose here that the host genes, as the stable part 
of the holobiont, play a leading role expressing pheno-
types through its microbiome-shaping capacity, possibly 
through the establishment of universal host genotype-
specific core microbiota.
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