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Abstract
Gastroenteritis and hepatitis are the most common illnesses resulting from the consumption of food contaminated with 
human enteric viruses. Several natural compounds have demonstrated antiviral activity against human enteric viruses, such 
as human norovirus and hepatitis A virus, while little information is available for hepatitis E virus. Many in-vitro studies 
have evaluated the efficacy of different natural compounds against human enteric viruses or their surrogates. However, only 
few studies have investigated their antiviral activity in food applications. Among them, green tea extract, grape seed extract 
and carrageenans have been extensively investigated as antiviral natural compounds to improve food safety. Indeed, these 
extracts have been studied as sanitizers on food-contact surfaces, in produce washing solutions, as active fractions in anti-
viral food-packaging materials, and in edible coatings. The most innovative applications of these antiviral natural extracts 
include the development of coatings to extend the shelf life of berries or their combination with established food technolo-
gies for improved processes. This review summarizes existing knowledge in the underexplored field of natural compounds 
for enhancing the safety of viral-contaminated foods and underscores the research needs to be covered in the near future.
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Introduction

In recent years, human enteric viruses have been recognized 
worldwide as one of the most significant causative agents of 
foodborne diseases (Harrison & DiCaprio, 2018; Ruscher 
et al., 2020). Human enteric viruses are mainly transmitted 
through the faecal-oral route, as infected people can excrete 
up to 100 viral particles per gram of feces, facilitating trans-
mission and infection (Arguedas & Fallon, 2004). Among 
them, human noroviruses are the leading cause of epidemic 
and sporadic acute gastroenteritis worldwide, making them 
the most common cause of foodborne illness (Ahmed et al., 
2014; Bartsch et al., 2016).

A wide variety of pathogenic viruses can be transmitted 
through the consumption of contaminated water or food. 

Among them, human norovirus, sapovirus, astrovirus, 
rotavirus and adenovirus are responsible for acute gastro-
enteritis, which manifests abruptly with symptoms such as 
diarrhea, vomiting, and sometimes is accompanied by fever 
and abdominal cramps. Severe gastroenteritis caused by 
human enteric viruses usually requires 2–5 days of treatment 
focused on maintaining good hydration of the patient (Glass 
et al., 2023). However, beyond the immediate symptoms and 
temporary discomfort induced by these enteric viruses, there 
is an increasing concern over their potential long-term health 
consequences. Recent studies indicate that some enteric 
viruses may have long-term impacts on the gastrointestinal 
system, potentially leading to the development of problems 
such as irritable bowel syndrome (IBS) and inflammatory 
bowel disease (IBD) in certain populations (Ansari et al., 
2020; Dehghani et al., 2023; Iliev & Cadwell, 2021).

On the other hand, hepatitis A virus (HAV) is the most 
frequent etiological causative agent of acute hepatitis asso-
ciated with water and food consumption (Ansari et  al., 
2020). HAV infection can be completely asymptomatic, as 
is usually in children under 5 years of age, or it can also 
cause acute hepatitis, which occurs frequently in adults and 
has two stages of development: a pre-jaundice stage and 
a jaundice stage, requiring hospitalization in some cases 
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(Dehghani et al., 2023). Another hepatitis virus transmitted 
through the faecal-oral route is the hepatitis E virus (HEV), 
which is zoonotic and considered a re-emerging foodborne 
pathogen in developed countries.10 According to the World 
Health Organization (WHO), HEV is estimated to cause 
44,000 deaths every year (Iliev & Cadwell, 2021). Depend-
ing on the genotypes, the routes of transmission can be either 
faecal-oral, usually through the consumption of contami-
nated drinking water or animal meat, or by direct contact 
with infected animals, typically occurring in developing 
countries (Pintó Solé et al., 2011). Recently, the presence of 
HEV has been described in different types of animal meat 
(such as cow and donkey) and in raw sheep’s milk (Demirci 
et al., 2019).

The contamination by food handlers or cross-contamina-
tion through contaminated surfaces is mainly associated with 
ready-to-eat products, such as salads, sandwiches, or bakery 
items, which are prepared or handled raw, or after the foods 
have been already cooked. Contamination can also occur 
during pre-harvest. This is the case of shellfish, eventually 
grown in fecally-impacted waters, as well as for leafy greens 
and berries contaminated in the fields by pickers or through 
polluted irrigation waters. The high risk associated with 
viral infection is due to the fact that all these food items are 
frequently eaten raw (Kupferschmidt, 2016; Sooryanarain & 
Meng, 2019). Globally, foodborne hazards cause approxi-
mately 600 million illnesses annually, with the human noro-
virus being responsible for 120 million cases attributed to 
water and food (Daniels et al., 2009). In 2021, there were 
4005 officially notified foodborne outbreaks (FBOs) in the 
European Union (EU), showing a 29.8% increase compared 
to 2020. Norovirus, including other caliciviruses, ranked 
as the third most frequently reported agents causing FBOs, 
according to reports from 14 EU member states and two non-
member states. France had the highest contribution with 112 
outbreaks. Hepatitis A caused FBOs in six member states, 
with one strong-evidence outbreak in Norway and a major 
weak-evidence outbreak in Czechia. Additionally, Hepatitis 
E FBOs were reported in Belgium and Switzerland, with a 
severe outbreak documented in Switzerland (Authority & 
European Centre for Disease Prevention and Control, 2022).

Enteric viruses present high stability to environmental 
stressors, providing them with long survival rates under 
extreme conditions. This resistance is also observed dur-
ing exposure to inactivation processes that are commonly 
applied in the food industry (e.g., thermal treatments, chemi-
cal disinfection) and along water (re)cycle processes (e.g., 
wastewater and drinking water treatment plants, WWTPs 
and DWTPs). Moreover, only a very low infectious dose is 
needed to cause a viral infection. For example, Rotavirus 
has an infectious dose of 0.9 focus forming units (ffu) (Ward 
et al., 1986), while Poliovirus Type 1 and Type 3 have doses 
of two plaque-forming particles and 1 TCID50, respectively 

(Katz & Plotkin, 1967). Norovirus, which has been exten-
sively studied, has an infectious dose of 18 viruses (Teunis 
et al., 2008). It is also noted that the infectious dose of HAV 
remains uncertain, with estimates ranging from one virion 
according to Grabow (1997) to an assumed range of 10–100 
virions based on research by Venter et al. (2007). These 
features represent the key factors contributing to FBOs by 
maintaining viral infectivity on surfaces (fomites) and in 
food products, spreading viral particles, and facilitating 
cross-contamination, finally resulting in highly transmitted 
diseases (Kuusi et al., 2002).

Furthermore, the economic impact of foodborne diseases 
attributed to enteric viruses, including health costs and pro-
ductivity losses, remains considerable (Ahmed et al., 2014; 
Bartsch et al., 2016; Havelaar et al., 2015). As such, the 
development of effective preventive measures and alterna-
tives to conventional food processing technologies is crucial 
for effectively tackling these pathogens.

Methodologies Applied to Assess 
the Antiviral Activity of Natural Compounds 
for Food Applications

To date, alcohols, quaternary ammonium compounds, and 
chlorine have been the most commonly used and studied 
sanitizers in food industry (Falcó et al., 2023a, b; Ogunniyi 
et al., 2019). However, the EU and the USA are intending to 
limit their use, especially chlorine-based sanitizers, due to 
concerns about chemical residues (WHO, 2013). Searching 
for alternative compounds with lower risk for consumers, 
natural compounds with antimicrobial and antiviral activity 
have emerged as promising candidates for use in food pro-
cesses. Consequently, the evaluation of the antiviral activity 
of these natural compounds in food matrices has seen sig-
nificant developments in recent years (McLeod et al., 2022). 
Traditionally, these assessments involve contaminating a 
sample with a known amount of virus and measuring the 
viral titer after exposure to specific conditions and/or com-
pounds. Statistical analyses are then applied to determine 
the significance of viral decay. However, these approaches 
rely on viruses that can be cultured in cell lines and quan-
tify through infectivity assays. This limitation restricted the 
range of viruses and strains that could be studied, such as 
human norovirus, and HAV and HEV wild type strains, for 
which in-vitro cultivation systems remain challenging (Estes 
et al., 2019; Fu et al., 2019; Kanda et al., 2020; Todt et al., 
2018). Virus detection through cell culture mainly relies 
on observing cytopathic effects, followed by quantification 
using plaque assays, the most probable number, or tissue 
culture infectious dose (TCID50) using surrogate viruses 
or cell-culture adapted strains. In recent years, significant 
progress has been made in developing systems capable of 
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cultivating human noroviruses in-vitro using three-dimen-
sional enteroids generated from human intestinal stem cells 
(known as human intestinal enteroids, HIE) (Ettayebi et al., 
2016). Additional alternative models to cultivate human 
norovirus have been recently described, including the zebra 
fish model (Dycke et al., 2019; Tan et al., 2023) and human 
salivary glands (Ghosh et al., 2022). However, it is important 
to acknowledge that some limitations still exist, which must 
be addressed before these models can be used on a routine 
basis (Costantini et al., 2018; Ettayebi et al., 2016). To over-
come these limitations, researchers turned to cultivable sur-
rogates such as feline calicivirus (FCV), murine norovirus 
(MNV), and Tulane virus (TV) to assess human norovirus 
survival following inactivation processes. However, the suit-
ability of these surrogate models has been questioned and 
requires further confirmation (Bae & Schwab, 2008; NAC-
MCF Executive Secretariat, 2016).

Alternative methods for assessing the binding ability, 
integrity of the capsid, or the integrity of the nucleic acid 
have been proposed as indirect measurements of viral infec-
tivity. Saliva and porcine gastric mucin (PGM) contain mul-
tiple human histoblood group antigens (HBGA) recognized 
as (co-)receptors for human norovirus (Tian et al., 2005). 
Thus, saliva and PGM have been used to selectively recover 
potentially infectious human noroviruses (Dancho et al., 
2012; DiCaprio, 2017). These binding assays have been used 
to evaluate the antiviral activity of grape seed extract (GSE) 
and green tea extract (GTE) against human norovirus and 
virus-like particles (VLPs) of human norovirus (Falcó et al., 
2019a, b, c; Li et al., 2012). Conversely, viability markers, 
such as photoactivatable dyes (e.g., propidium and ethidium 
monoazide) or metal compounds like platinum chloride, can 
penetrate damaged or altered viral capsids and intercalate 
the nucleic acid, thereby interfering with PCR amplifica-
tion. This allows for the estimation of potentially infectious 
viruses. Thus far, viability RT-qPCR has been successful in 
detecting the inactivation of human norovirus genogroup I 
(GI) and GII exposed to epigallocatechin gallate, a derived 
compound from GTE (Falcó et al., 2017). However, a recent 
study reports significant limitations of viability RT-qPCR 
compared to replication in HIE for inferring human norovi-
rus inactivation (Wales et al., 2024). An additional analytical 
tool is the full-length or long-range RT-PCR which has been 
used to estimate genomic integrity as a proxy for viral infec-
tivity (Pecson et al., 2011; Raymond et al., 2023). However, 
as amplification efficiency decreases with fragment size, its 
robustness and sensitivity have not always been confirmed.

Evaluation Methods for Antiviral Activity 
in Formulations

The absence of an official regulation specifically designed 
to evaluate the antiviral activity of natural compounds for 

food applications forced scientists to use or adapt home-
made protocols. Increasing numbers of standards are being 
released for viruses; however, many fields of application 
remain uncovered. The majority of standards in applied 
virology are derived from those originally developed for 
bacteria. For example, the ISO 12353, developed to deter-
mine the bactericidal activity, served as framework for ISO 
14476, which establishes the methods for virucidal activity 
(ISO, 2015). However, due to the inherent differences among 
microorganisms, many bacterial standards are not suitable 
for viruses.

As a preliminary procedure to assess the antiviral activity 
of natural compounds, the evaluation involves a solubiliza-
tion/emulsification step of the natural compounds at a given 
concentration. This is followed by a viral inoculation into 
the solution, a waiting/contact time during which the active 
compound in the solution exerts its activity, and finally, a 
neutralization step using a solution (referred to as a neutral-
izer) to stop the compound’s action. In the food industry, 
a relevant variable to considered is the organic load of the 
solution in which the natural compound is expected to be 
used. To mimic this, fetal bovine or calf serum is added to 
the solution at a typical concentration of 10% v/v to mimic 
the organic load of dirty surfaces. A comprehensive inves-
tigation should also monitor additional factors including 
temperature, solubility of compounds, static or agitation 
conditions, and pH. After neutralization, viral inactivation 
should be determined by directly titrating the solution in cell 
culture. The experimental design requires the inclusion of 
proper controls: a positive-control solution with the virus 
only (without the active compound) must be tested under 
the same experimental conditions to rule out potential viral 
decay, and a negative-control solution (without the virus and 
without the natural compound) must be tested to check any 
effect on the cells. In addition, assessment of cytotoxicity 
can be performed by monitoring changes in cell appearance, 
such as cell enlargement, granularity, rounding and plaque 
detachment over time, while the MTT assay provides a rapid 
and sensitive method for evaluating antiviral agents. Inclu-
sion of a neutralization control is also necessary ensures 
cessation of antiviral activity at a specific time point.

Considering all these variables, the resulting protocols 
differ in the solubilization, exposure, and titration techniques 
adopted depending on the specific antiviral compound being 
tested and the intended food application.

Methods for Assessing the Antiviral Activity 
of Antiviral Materials

The broad range of applications and diverse nature of mate-
rials made the establishment of standard methods for evalu-
ating their antiviral properties challenging. Consequently, 
researchers have adapted existing methods designed for 
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evaluating the antibacterial activity of antibacterial- and 
antifungal-treated plastics, as well as other non-porous sur-
faces (e.g., ISO 22196, and JIS Z 2801 standards), to test the 
antiviral properties of materials (Pecson et al., 2011; Wales 
et al., 2024). In 2018, the ISO 16777 and ISO 21702 stand-
ards were specifically release to assess the virucidal capac-
ity of materials. While these standards are not specifically 
intended for food industry applications, they both align with 
the goal of testing the antiviral effectiveness of materials 
incorporating natural compounds against foodborne viruses 
(ISO, 2015; Raymond et al., 2023).

The assessment of the antiviral properties of polymeric 
materials typically involves viral inoculation onto the mate-
rial, a waiting/contact period for the active compound in 
the polymeric material to exert its antiviral effect, and a 
subsequent recovery step using a neutralizing solution or 
swabbing. Control materials without active compounds are 
included for comparison. However, challenges arise when 
applying this approach to coatings due to the gel-like nature 
of the biopolymers commonly used. To address this, ISO 
14476 has been successfully adapted to test the antiviral 
activity of polymer gels (Falcó et al., 2019a, b, c).

In addition to the variations mentioned above, real-world 
applications may introduce additional variables, as food 
matrices can interact with antiviral compounds, requiring 
higher compound concentrations for the same effect reported 
in-vitro. Consequently, while laboratory tests may report 
high antiviral activity, the translation of these findings into 
reduced foodborne viral transmission risk in practical sce-
narios remains an underexplored area pending to be compre-
hensively assessed in the future. For instance, antiviral activ-
ity observed in laboratory tests involving silver nanoparticles 
on coupons did not consistently replicate when applied to 
highly turbid surface waters, possibly due to interactions 
with nonspecific particles (Luceri et al., 2023). This high-
lights the evolving nature of antiviral material assessment in 
addressing scientific challenges and real-world complexities.

Natural Compounds

The search for novel alternatives to traditional chemical 
and physical processing technologies for food conservation 
and decontamination is one of the main objectives of the 
WHO and the food industry (Kuusi et al., 2002). In addi-
tion to the increasing consumer demand for worthwhile 
and “green” alternatives to chemicals, a special interest has 
emerged in the use of natural compounds. Generally, natu-
ral compounds display low toxicity and a lack of secondary 
effects, as most of them are Generally Recognized as Safe 
(GRAS) substances (Havelaar et al., 2015). The moderate 
production costs and their abundance in raw materials and 
by-products make natural compounds an important source 

of antimicrobials and a great alternative to chemicals, allow-
ing them to be used as harmless formulations for preserving 
food safety (Falcó et al., 2019a, b, c; ISO, 2019).

Several studies have investigated the antiviral activity of 
natural products without characterizing their chemical com-
position, being the compounds responsible for viral inactiva-
tion unknown (Luceri et al., 2023). For instance, date syrup 
and propolis blocked norovirus VLP binding to HBGAs, 
caused by the aggregation of viral particles as indicated by 
dynamic light scattering (Ayaz et al., 2019).

For decades, several secondary metabolites present in 
plant extracts, otherwise known as phytochemicals, have 
been extensively studied due to their antimicrobial proper-
ties. Furthermore, their synergetic activity with many drugs 
to combat multi drug-resistant pathogens has been reported 
(Burt, 2004; El-Saber Batiha et al., 2021). For these reasons, 
studies on natural compounds propose them as an alternative 
method to control enteric virus contamination. Among plant 
extracts, the Ephedra herba crude extract was demonstrated 
to inhibit human norovirus infection in post-entry steps 
using the HIE model (Hayashi et al., 2023). Silvestrol, a 
secondary metabolite from Aglaia foveolata plant, is known 
for its specific inhibition of the RNA helicase and recently 
demonstrated to block HEV replication in a dose-dependent 
manner at low nanomolar concentrations acting additively 
to ribavirin (Kanda et al., 2020; Luceri et al., 2023). Also, 
extracts approved by US Food and Drug Administration as 
food additives in beverages demonstrated antiviral activity 
against norovirus surrogates, such as the case of Quillaja 
saponaria Molina (Ruoff et al., 2022).

Phytochemicals, can be divided into different categories: 
organic acids, essential oils (EOs), polypeptides, polyphe-
nols, proanthocyanins, saponins, polysaccharides and sulfur 
compounds. In the last decade, antiviral studies have focused 
primarily on polyphenols and Eos (Ayaz et al., 2019; Battis-
tini et al., 2019; Bozkurt et al., 2014; Joshi et al., 2023). For 
most of them, the specific mechanisms behind the antiviral 
effect are not fully understood, but the damage of differ-
ent structures involved in infection (viral capsid or host cell 
membranes), which subsequently affects viral attachment to 
host cells, has been frequently observed (Knight et al., 2013; 
Zhang et al., 2012a, b). As summarized in Table 1, numer-
ous natural compounds have been evaluated against enteric 
virus or surrogates.

Natural Compound Categories

Polyphenols

This group of phytochemicals is one of the most important 
due to its antioxidant, anticarcinogenic or neuroprotective 
properties, among others. Consequently, the trade of poly-
phenols as functional food has increased in the last decade 
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Table 1   Major groups of natural compounds categories evaluated against human enteric viruses or their surrogates

FCV feline calicivirus; MNV murine norovirus; HAV hepatitis A virus; RT rotavirus; UDL under detection limits; NTD no titer decrease
*% RV Binding, **OD450

Category Main natural compound Viruses evaluated Method Reductions (log) References

Polyphenols Grape Seed Extract FCV PFU 4.61 Amankwaah (2013)
MNV 1.73
HAV 3.20

Green tea extract Human Norovirus RT-qPCR 0.31 Falcó et al. (2019a, b, c, 2020), Ran-
dazzo et al. (2020)MNV TCID50 UDL

HAV
Immature persimmon fruit MNV Su et al. (2010a, b), Zhong et al. (2012)

HAV NDT
Posidonia Oceanica FCV 3.4 Méndez et al. (2021)

MNV 2.6
Ziziphora hispanica FCV 4.21 Benito-González et al. (2019), Duque-

Soto et al. (2022)MNV NDT
Thymus longiflorus FCV 2.25

MNV NDT
Origanum bastetanum FCV 2.21

MNV 2.16
Luma apiculata (DC.) Burret UDL Duque-Soto et al. (2022)

Essential oils and 
compounds 
thereof

Carvacrol FCV Moussaoui (2013)
MNV
HAV 1.0

Zataria FCV NTC Battistini et al. (2019)
MNV 0.1
HAV 0.4

Lemongrass 2.8 Gilling et al. (2014)
Mint MNV 0.9
Oregano FCV 0.3 Zhang et al. (2012a, b)

HAV 0.1
Thymol MNV 0.5 Kovač et al. (2012)

HAV NDT
Orange 2.1 Kim et al. (2017), Kovač et al. (2012)
Grapefruit 2.9
Rosemary 3.0
Clove FCV 3.8 Zhang et al., (2012a, b)

MNV 0.8
Allspice FCV Elizaquível et al. (2013)

MNV
Polysaccharides Stevia rebaudiana RV Binding 28%* Takahashi et al. (2001)

Chitosan FCV PFU  > 3.1 Amankwaah (2013)
β-glucans MNV TCID50  > 3.30 Pérez-Bassart et al. (2024)
Carrageenans 3.2 Falcó et al. (2019a, b, c)

HAV 2.7
Organic acids Citrate Human Norovirus Binding 3.60** Girond et al. (1991), Koromyslova et al. 

(2015)
Betulinic acid FCV TCID50/mL 4.17 Li et al. (2013)

Proteins Lactoferrin MNV
RV

PFU UDL Ishikawa et al. (2013), Kvistgaard et al. 
(2004)0.6



285Food and Environmental Virology (2024) 16:280–296	

(Cozzi et al., 2023; Zhang et al., 2012a, b). Foods such as 
cranberries, grapes, or pomegranates are rich in polyphenols. 
Different studies have reported that cranberry and pome-
granate juices, GSE, and GTE have strong antiviral activity 
against human norovirus and its surrogates, includingFCV, 
MNV, and TV, as well as HAV (Amankwaah, 2013; Chiang 
et al., 2003; Falcó et al., 2020; Li et al., 2012; Randazzo 
et al., 2020; Yilmaz & Toledo, 2004). GSE is recognized for 
containing a minimum of 95% flavanols among polyphenols, 
with 12% being highly active monomeric proanthocyanidins 
and 82% oligomeric proanthocyanidins. GTE primarily com-
prises catechins, a class of flavonoids known for their anti-
microbial activity. Epigallocatechin-3-gallate (EGCG) and 
epicatechin gallate (ECG) have been identified as the most 
effective antiviral compounds among those contained in 
GTE (Amankwaah, 2013; Randazzo et al., 2020). Although 
the specific antiviral components contributing to the antivi-
ral activity have not always been identified, it seems that dif-
ferent compounds included in the natural extracts play a syn-
ergistic role in exerting the antiviral effect. For instance, the 
antiviral mechanism of action for cranberry polyphenols, as 
described by Lipson and collaborators, relies on the preven-
tion of virus replication inside the host cells (Zhang et al., 
2012a, b). Nevertheless, other authors have reported changes 
in the viral capsids resulting in the failure of cell infection 
(Cozzi et al., 2023). Studying the antiviral activity of GTE, 
Falcó and colleagues found that the derivatives of EGCG, a 
flavonoid from GTE, are responsible for the antiviral effect 
of GTE at different pH, exerting subtle alterations of the cap-
sid proteins while preserving the binding ability of human 
norovirus (Knight et al., 2013). Furthermore, improvements 
of the antiviral activity of GTE was enhanced by prepar-
ing the GTE solution 24 h before its use (aged-GTE). In 
addition, esters of EGCG with polyunsaturated fatty acids 
exhibited anti-hepatitis C virus activity (Yilmaz & Toledo, 
2004). Bio-active extracts from immature persimmon fruits, 
containing significant phenolic contents (~ 11–27 mg gallic 
acid (GA)/g dry extract), displayed antiviral activity against 
MNV and HAV (Lipson et al., 2007). Similarly, extracts 
from Posidonia oceanica at concentrations of 0.5%, with 
polyphenols content of approximately 80 mg GA/g extract, 
were able to reduce the titers of both FCV and MNV by 
more than 2 log (Su et al., 2010a).

Medicinal and aromatic plants (MAPs) are also potential 
sources of natural bio-active phytochemical compounds, 
with polyphenols being the most relevant antioxidant mol-
ecules for food applications (Su et al., 2010b). Some of these 
MAPs have exhibited antiviral activity against MNV, FCV, 
and HAV. Duque-Soto and collaborators showed that poly-
phenols from Ziziphora hispanica, Thymus longiflorus, and 
Origanum bastetanum extracts reduced FCV titers by 4.2, 
2.2, 2.2, and 2.4 log at 5 mg/mL, respectively, when tested 
at 25 °C. In the case of MNV, significant differences were 

observed for Origanum bastetanum, resulting in reductions 
by 1.5 log at 0.5 and 5 mg/mL (Duque-Soto et al., 2022). 
Similarly, Sandoval and collaborators evaluated the phenolic 
and antioxidant compounds extracted from arrayan (Luma 
apiculata (DC.) Burret) leaves against enteric viruses. MNV 
titers were reduced to undetectable levels, while HAV titers 
decreased by 2.4 log (Carrasco-Sandoval et al., 2022). The 
polyphenols  extracted from the roots of Chinese liquo-
rice (Glycyrrhiza uralensis), such as glyasperin, glycyrin, 
2′-methoxyisoliquiritigenin, licoflavonol, and glyasperin D, 
have been demonstrated to inactivate rotaviruses by directly 
inhibiting viral binding (Kwon et al., 2010).

About 50 Chinese plants were screened against human 
norovirus, and results showed that antiviral activity was 
determined by the inhibition of norovirus HBGA receptors 
bound by tannic acid (Zhang et al., 2012a, b).

Essential Oils and Compounds Thereof

EOs and their derivatives are aromatic compounds extracted 
from different plant parts. In the past, the industry has 
used EOs as flavoring agents and natural antimicrobials to 
improve food safety (ISO, 2019; Pinto et al., 2021).

Although there have not been many studies evaluating 
efficacy of EOs on human enteric viruses, published results 
suggest their use could be promising in the food sector. Car-
vacrol, lemongrass, allspice, mint oregano, or thymol are 
some of tested compounds (Table 1) (Carrasco-Sandoval 
et al., 2022; Chouhan et al., 2017; Duque-Soto et al., 2022; 
Elizaquível et al., 2013; Kwon et al., 2010; Zhang et al., 
2012a, b). Significant reductions of more than 3 log were 
shown by thyme, clove or allspice Eos, inhibiting MNV and 
FCV replication (Carrasco-Sandoval et al., 2022; Duque-
Soto et al., 2022; Elizaquível et al., 2013). Discrepant results 
have been reported on the efficacy of EOs against HAV. For 
example, thymol was tested by Sanchez and Aznar without 
success, however Battistini and collaborators, demonstrated 
the efficacy of lemon, grapefruit and rosemary cineole EOs 
on HAV, reducing viral titers by nearly 3 log (Battistini 
et al., 2019; Sanchez et al., 2015). A relevant factor to be 
considered when assessing the antiviral effect of EOs is the 
procedure used for the extraction, as different fractions and 
concentrations of active compounds may result. Additional 
variables to be considered are the seasonal variations due to 
the time of harvest, the plant germoplasms/variety, solubility 
and oxidation (Settanni et al., 2014).

The antiviral mechanism is specific of the type of EOs 
considered in general, the initial degradation of the capsid is 
followed by the subsequent damage of the viral RNA, finally 
preventing viral adsorption to host cells. Specifically, it has 
been reported that EOs denature structural glycoproteins 
and proteins of the viral particle, rendering them completely 
unable to infect (Chouhan et al., 2017).



286	 Food and Environmental Virology (2024) 16:280–296

Polysaccharides

Polysaccharides constitute a group of bio-active compounds 
with huge structural diversity, and some of them show anti-
viral activity. For example, Stevia rebaudiana, one of the 
most popular ingredients currently used by the food industry 
for its sweetening characteristics with low calorific value, 
has demonstrated antiviral activity against rotaviruses (Taka-
hashi et al., 2001). Chitosan, derived from chitin, the second 
most abundant polysaccharide after cellulose, reduced FCV 
infectivity by more than 3 log (Akter et al., 2014; Amank-
waah, 2013; Davis et al., 2012). In a recent study, the anti-
viral activity of aqueous fractions rich in β-glucans from 
Pleurotus ostreatus was evaluated against MNV to elucidate 
whether the extract composition and structural complexity of 
the β-glucans affected the antiviral activity. Overall, purified 
β-glucans significantly reduced MNV titers below the limit 
of detection, indicating that the greater structural heteroge-
neity of the polysaccharides had a positive effect on their 
antiviral properties. Consequently, the antiviral activity of 
the extracts was mainly attributed to the amount and type of 
polysaccharides, rather than the content of polyphenols and 
other low molecular weight compounds present in this type 
of natural compounds (Akter et al., 2014).

While not many natural compounds have been tested on 
HAV, three types of different carrageenans (iota-, lambda- 
and kappa carrageenan) were assayed in-vitro to assess 
their antiviral effect, resulting in up to 1.6 log reduction for 
ι-carrageenan at 500 mg/ml (Girond et al., 1991).

Organic Acids

The use of organic acids, specifically citric acid, is wide-
spread in the food industry. Citrates, which are salts of citric 
acid used in food supplements and some medications, are 
also used. Studies on the effect of citrate on HAV particles 
revealed that epitopes became more accessible to antibod-
ies, making them more susceptible to inactivation (Hansman 
et al., 2012). Additionally, Hansman and collaborators dem-
ostrated that citrate had the potential to inhibit the interac-
tion of human norovirus with HBGAs, thereby blocking host 
infection. This supports the idea that foods rich in organic 
acids, such as citrus fruits, together with other bio-active 
compounds, may exert antiviral activity (Hansman et al., 
2012; Li et al., 2013).

McLeod and colleagues investigated the application of 
citric acid and acetic acid to inactivate HEV on food and 
on food-contact surfaces. By measuring viral infectivity by 
cell culture, the authors concluded that while citric acid and 
acetic acid have potential applications to control HEV on 
food-contact surfaces, they are not suitable for direct use on 
food (McLeod et al., 2022).

Kowalczyk and coauthors performed assays where betu-
linic acid from hairy roots of Senna obtusifolia was tested 
against norovirus surrogates, showing 4 log reduction in 
FCV infectivity (Kowalczyk et al., 2021).

Proteins

In-vitro studies indicate that certain milk proteins interfere 
with viral infections. Lactoferrin, found in cow and breast 
milk, has been extensively researched for its ability to hinder 
viral infections, including MNV, poliovirus (PV) and rota-
virus. This interference primarily occurs through lactoferrin 
binding to receptors on the host cell's surface or on viral par-
ticles. Furthermore, it disrupts viral protein structures and 
inhibits viral replication (Ishikawa et al., 2013; Kvistgaard 
et al., 2004; Pan et al., 2006).

Natural Compounds in Food Applications

Within the food industry, various preservation methods, 
including heat treatment, salting, acidification, and drying, 
have been employed to extend the shelf life of food items 
and guarantee their safety by inhibiting the growth of spe-
cific microorganisms and inactivating human pathogens. 
Additionally, there is a growing interest in foods preserved 
with natural additives. These natural bio-active compounds 
can be directly incorporated into the product, applied to the 
food surfaces, integrated into packaging materials, or used in 
antiviral coatings, ensuring their efficacy in controlling viral 
contamination (Burt, 2004; Randazzo et al., 2018).

Antiviral Activity of Natural Compounds in Food 
Applications

Currently, the exploration of natural compounds as potential 
antiviral agents in food applications represents a burgeon-
ing area of research, with promising implications for food 
safety and public health. While this field is still in its early 
stages, a growing number of studies have begun to investi-
gate the use of natural compounds to mitigate viral contami-
nation in various food products. These investigations have 
yielded insights into the effectiveness of direct applications 
of different compounds in a range of food types, includ-
ing jalapeno peppers, apple juice, milk, lettuce, and oysters. 
As a result, titer reductions for FCV, MNV, and HAV were 
reported when treated with GSE, carvacrol, and curcumin 
(Joshi et al., 2015; Sanchez et al., 2015; Su & D’Souza, 
2013). Table 2 summarizes the main applications of natural 
antiviral compounds studied in recent years.
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Natural Compounds as Sanitizers for Produce

To date, chlorine has been the primary sanitizer used by 
produce industry. Current studies show that both chlorine 
and chlorine dioxide have a high capacity to inactivate 
human enteric viruses or their surrogates, such as HAV, 
human norovirus, MNV, TV and MS2 coliphage, when a 
minimum concentration of sanitizer and a given contact 
time are ensured (Allende et al., 2024; Dunkin et al., 2017; 
Falcó, et al., 2023a, b). Despite the efficacy shown by these 
compounds, peracetic acid, widely employed to control 
bacterial contamination, does not yield the same conclu-
sion. The European Union and the USA are considering 
banning or reducing the use of chlorine and chlorine diox-
ide because of the chemical by-products generated (Van 
Haute et al., 2014). Thus, there is an increasing interest in 

the use of natural antiviral compounds in food processes, 
particularly in washing steps, to pursuit safer food pro-
cessing methods and minimized risk for consumers. So 
far, carvacrol, GSE, and GTE are among the most popular 
natural compounds used as antiviral sanitizers (Fig. 1). In 
a study conducted by Sánchez et al. (2015), the antiviral 
activity of carvacrol was evaluated during the washing of 
lettuce, revealing reductions of nearly 2 log and reaching 
the limit of detection for norovirus surrogates after 30 min 
of exposure to a 1% carvacrol solution. Even more remark-
able results were observed when GSE was used to disinfect 
peppers and lettuce, with viral titers for FCV, MNV, and 
HAV decreasing by 5.0, 1.2, and 1.2 log, respectively, after 
5 min of treatment (Su & D’Souza, 2013). In addition, 
GTE was evaluated as a natural disinfectant for produce. 
A 10 mg/ml GTE solution reduced MNV and HAV titers 

Table 2   Food applications using natural compounds with enteric antiviral activity

Red reduction; FCV feline calicivirus; MNV: murine norovirus; HAV hepatitis A virus; GSE grape seed extract; GTE green tea extract; CNMA 
cinnamaldehyde; AITC allyl isothiocyanate; UDL under detection limits; NTD no titer decrease

Food application Natural compound Concentration Matrix Virus Method Red Refs.

Washing Carvacrol 1% Lettuce FCV TCID50 0.92 Sanchez et al. (2015)
MNV 1.00

GSE 0.025% Pepper FCV PFU 2.71 Joshi et al. (2015)
0.1% MNV 0.8

GTE 0.5% Lettuce HAV TCID50 0.79 Randazzo et al. (2017)
1% Spinach MNV 1.80

Food-contact surfaces GSE 0.2% Stainless steel PFU 0.56 Li et al. (2012)
GTE 1% TCID50 3.46 Randazzo et al. (2017)

Glass 1.79
HAV  > 2.80

Acid citric 1% Stainless steel HEV RT-qPCR 2.20 McLeod et al. (2022)
Plastic 2.30

3% Stainless steel 2.36
Plastic 2.32

5% Stainless steel 2.44
Plastic 2.48

Packaging GSE 15% Chitosan film MNV PFU 2.27 Amankwaah (2013)
GTE 1:0.5

(Alginate:GTE)
Alginate TCID50 2.25 Fabra et al. (2018)

1:0.75
(Alginate:GTE)

2.79

CNMA 75 wt %
(Zein/CNMA)

Polyhydrobutyrate FCV UDL Fabra et al. (2016)
MNV 2.75

Coatings GTE 1:0.7
(Alginate:GTE)

Strawberries 1.96 Fabra et al. (2018)HAV

1:0.7 (Carrageenans:GTE) Raspberries MNV 2.5 Falcó et al. (2019a, b, c)
Blueberries 1.54

AITC 0.5%
(Persian Gum:AITC)

2.04 Sharif et al. (2021)

Larrea nitida Agar UDL Moreno et al. (2020)
Alginate
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in lettuce and spinach by more than 1.5 log after a 30-min 
treatment (Randazzo et al., 2017).

In spite of these promising applications, more studies are 
still needed to define treatment times and temperature con-
ditions, adapting natural compounds to specific operational 
conditions.

Natural Disinfectants for Decontaminating 
Food‑Contact Surfaces

As commented previously, cross-contamination through 
food-contact surfaces is an important source of human 
enteric virus transmisión (Sanchez et al., 2015; Van Haute 
et al., 2014). Food surfaces are susceptible to contamination 

through direct contact with body secretions, lack of hygiene 
from food handlers, or aerosols generated by talking, sneez-
ing, coughing, or vomiting. It is now well-established that 
chemical sanitizers exert strong antiviral activity on con-
taminated food-contact surfaces (Su & D’Souza, 2013; Van 
Haute et al., 2014). While their efficacy has been widely 
demonstrated, chemical sanitizers may require additional 
washing steps to ensure the removal of chemical residues 
that could potentially contaminate the food.

Nevertheless, despite the importance of alternatives for 
cleaning surfaces, there are few studies assessing the use of 
natural compounds as sanitizers, except for GSE and GTE 
(Table 2, Fig. 2). GSE, applied at 1 mg/mL for 30 s, effec-
tively reduced Aichi virus (AiV) to undetectable levels under 

Fig. 1   Overview of the experimental design for testing the antiviral activity of natural sanitizers

Fig. 2   Overview of the experimental design for testing the antiviral activity of natural disinfectants for decontamination food-contact surfaces
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clean conditions. In the presence of organic load, simulating 
unclean conditions, GSE concentrations of 2 and 4 mg/mL 
significantly reduced AiV infectivity (Abad et al., 2001). 
However, under conditions simulating real-world applica-
tions in the food industry, the efficacy of 2 mg/mL GSE on 
stainless steel surfaces contaminated with MNV was lim-
ited after 10 min (Joshi & D’Souza, 2021). Additionally, 
10 mg/mL GTE for 30 min notably reduced MNV by 1.5 
log and completely inactivated HAV on stainless steel and 
glass surfaces, complying with the ISO 13697:2001 stand-
ard (Randazzo et al., 2017). Citric and acetic acids were 
demonstrated to inactivate HEV on food-contact surfaces. 
Specifically, HEV-contaminated plastic and stainless steel 
surfaces were treated with acetic or citric acid at 1, 3, or 5%. 
Viral infectivity was reduced by more than 2 log as deter-
mined by cell culture, indicating that citric and acetic acids 
have potential applications to control HEV on food-contact 
surfaces (McLeod et al., 2022).

Overall, the above-mentioned studies revealed differences 
depending on the type of surface, highlighting the limited 
transferability of the results because of the high concentra-
tion and extended exposure/contact time, which may not be 
suitable for real scenarios.

Bio‑Active Packaging and Coatings

While the primary approach to preventing foodborne viral 
infections involves adhering to good hygienic, agricul-
tural, and manufacturing practices active packaging stands 
out in the realm of food technology as an innovative solu-
tion, catering to consumer demands for fresh, ready-to-eat 
food while aligning with global market trends (Vojir et al., 
2012). Numerous studies have established the effectiveness 
of active packaging in prolonging the shelf life of food items 
and controlling foodborne pathogenic bacteria.111 Nowa-
days, materials endowed with antimicrobial properties are 
widely utilized in the food industry, with several commer-
cially available options (Seymour & Appleton, 2001).

Despite extensive research on the effectiveness of anti-
microbial packaging against foodborne pathogenic bacteria 
and molds, investigations into their efficacy against human 
enteric viruses has only been reported in recent times. Thus, 
the development of materials enriched with antiviral natural 
compounds for food applications is emerging as an innova-
tive approach that holds potential in preventing both cross 
and recontaminations. The resulting antiviral effect could be 
due to the material itself or the inclusion of antiviral com-
pounds within the structure of the material that comes into 
contact with the contaminated food. In addition, the material 
could act as a carrier of the antiviral compounds, ideally 
gradually releasing them as volatile substances (Tiwari et al., 
2009). Thus, packaging and coating materials can serve as 
an excellent vehicle for antiviral compounds in many fields 
within the food industry, such as food packaging, food-con-
tact surfaces, and edible coatings (ISO, 2019).

Natural Antiviral Packaging

Edible films containing GTE or GSE have been formulated 
using different matrices and tested, as shown in Fig. 3 (Fabra 
et al., 2018; Falcó et al., 2019a, b, c). For instance, Fabra 
et al. incorporated cinnamaldehyde into a polyhydrobutyrate 
matrix, achieving significant reductions in MNV and FCV, 
although HAV proved more resistant (Fabra et al., 2016). By 
adapting the ISO 22196:2011 the authors estimated reduc-
tions of 2.75 log for MNV and a complete inactivation for 
FCV, while HAV proved to be resistant. Amankwaah (2013) 
explored the use of GSE in chitosan films, achieving sub-
stantial reductions in MNV titers, particularly with high 
GSE concentrations. Fabra et al. developed edible films with 
GTE and GSE in an alginate matrix, displaying promising 
antiviral activity (Fabra et al., 2018).

Natural Antiviral Coatings

Edible coatings have emerged as a novel approach to control 
pathogens in raw foods like berries, which are susceptible to 

Fig. 3   Overview of the experimental design for testing the activity of natural antiviral packaging
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contamination by human enteric viruses (Fig. 4). Evaluating 
the efficacy of GTE-coated berries revealed the inactivation 
of MNV and HAV during storage at 10 and 25 °C, although 
this effect varied with the type of berry (Fabra et al., 2018). 
Strawberries have been used as models for testing antivi-
ral coatings, including κ-, ι-, and λ-carrageenan with GTE, 
effectively inactivating MNV and HAV (Falcó et al., 2019a, 
b, c). Similarly, the study explored the antiviral properties of 
natural compounds in blueberry coatings, highlighting the 
enhanced efficacy of allyl isothiocyanate (AITC), especially 
at 37 °C, and the potential of agar and alginate-based coat-
ings with or without the antiviral extract to inactivate enteric 
viruses, thereby enhancing food safety (Fabra et al., 2018; 
Falcó et al., 2019a, b, c; Sharif et al., 2021).

Hurdle Technologies Involving Antiviral 
Natural Compounds

In the field of food technology research, the increas-
ing demand for green food-processing technologies with 
improved sustainability (e.g., reduced energy/water con-
sumption) and enhanced ability to prevent infections has led 
to the development of groundbreaking hurdle approaches, 
also known as hurdle technologies. These food processes 
combine a variety of technologies that constitute succes-
sive obstacles or barriers able to either eliminate the pres-
ence of pathogens or significantly reduce their presence. 
This approach has helped pave the way for new food safety 
standards. The combination of different hurdles results in 
pronounced inactivation efficacy due to additive or syner-
gistic effects. In the hurdle effect, overall pathogen inactiva-
tion is not just the sum of the different preservative factors 

(additive effect), but it is even greater given the synergistic 
activity of the treatments (synergistic effect) (Gurtler et al., 
2019; Leistner & Gorris, 1995).

Among many examples, the use of natural antimicrobi-
als has been combined with mild processing techniques to 
minimize the severity of food processing while achieving 
the inactivation of foodborne pathogens (Del Nobile et al., 
2012). This approach results in cost savings, maintenance 
of food safety, and preservation of nutritional and sensory 
attributes.

Traditionally, thermal treatments have been the most 
commonly applied technology for food preservation in both 
domestic and industrial settings (Gurtler et al., 2019). Unfor-
tunately, high temperature treatments negatively impact food 
quality, decreasing both the nutritional and sensory value 
of foods (Leistner & Gorris, 1995; Peng et al., 2017). Thus, 
combining mild thermal treatments with additional hur-
dles, such as antimicrobial compounds, has been pointed 
out as a solution able to preserve food quality while ensur-
ing food safety. This combination of technologies has been 
described as chemically-assisted low-temperature pasteuri-
zation or heat sensitization (Butot et al., 2008; Koskiniemi 
et al., 2013; Peng et al., 2017). The synergistic effect of 
natural compounds and food processing technologies has 
been reported for heat treatments coupled with curcumin, 
gingerol, GSE, or GTE on TV, MNV or HAV (Falcó et al., 
2020; Patwardhan et al., 2020).

Patwardhan and colleagues investigated the effect of heat 
sensitization using curcumin, gingerol (from ginger), and 
GSE, on HAV and TV. Decreased D-values for TV and HAV 
were observed when heat treatments were applied in combi-
nation with each of the three natural compounds. Moreover, 
the linear model showed significant differences between the 

Fig. 4   Overview of the experimental design for testing the activity of natural antiviral edible coatings
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D-values of HAV and TV with and without the extracts for 
most tested temperatures. Thus, the authors concluded that 
these compounds can potentially lower temperature and time 
regimens needed to inactivate HAV and TV (Patwardhan 
et al., 2020).

In trials with the same purpose, Falcó and colleagues 
tested a preservation approach based on the use of aged-
GTE and mild heat treatments to inactivate MNV and HAV 
in artificially contaminated fruit juices (a mixed fruit juice 
and an apple juice) (Falcó et al., 2020). Specifically, the 
authors combined mild heat treatments at 40, 50, or 63 °C 
with aged-GTE and reported that MNV titers were lower 
than those resulting from thermal treatment alone. These 
findings indicated a relevant synergistic antiviral effect of 
aged-GTE combined with mild heat treatments for MNV, 
which was not confirmed for HAV.

High hydrostatic pressure processing (HPP) is a nonther-
mal processing technique that has emerged as a promising 
technology to preserve a variety of food products, including 
fruit jams, orange juice, salsa, ready-to-eat meats, and oys-
ters. In addition, inactivation studies have demonstrated the 
effectiveness of HPP to control viral pathogens, including 
HAV and human norovirus surrogates (Govaris & Pexara, 
2021; Huang et al., 2020; Kingsley et al., 2007). The HPP 
technology was tested in combination with aged-GTE to 
inactivate HAV, MNV and human norovirus (Falcó et al., 
2023a, b). Interestingly, the synergistic effect was demon-
strated in buffered suspension against human norovirus GI 
by a binding assay and against norovirus GII by replication 
on HIE. Furthermore, HPP combined with aged-GTE was 
successfully tested to inactivate MNV and HAV in apple 
and horchata (a traditional beverage from Valencia, Spain) 
juices. Interestingly, the kinetic inactivation data reported by 
the authors corroborate the different sensitivity of the two 
viruses tested, with HAV being more sensitive than MNV 
(Falcó et al., 2023a, b, 2019a, b, c).

All these research findings strongly support the feasibil-
ity of adding natural compounds with antiviral activity to 
reduce the operating conditions (e.g., temperature, pression, 
time) of processing technologies, ultimately preserving food 
quality while guarantying food safety.

Conclusions and Research Future Needs

Reviewed data indicates that a broad range of natural com-
pounds exert antiviral activity in in-vitro tests. Experimen-
tal evidence on human norovirus and HEV inactivation 
by GRAS substances is still limited, even though studies 
exploiting novel replication models (e.g., HIE, zebra fish) 
are expected to be increasingly reported. However, research 
on food applications and the validation of their use under 
pilot or commercial conditions is very limited. In line with 

latest released FAO and WHO reports on hazards in pro-
duce, the general consideration is that there is still a need to 
test the antiviral activity of natural compounds in industrial 
applications and real-scenario settings.132 Furthermore, a 
more thorough examination of the impact of natural antivi-
ral compounds on shelf life and sensory quality is needed, 
especially when their use is combined with additional pres-
ervation techniques.
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