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Abstract
Discovered in 2004, carbon dots have garnered a major attention due to their unique optical properties, nanoscale size, 
and cost-effectiveness. Their potential uses are applicable for bioimaging, electronics, and the food industry. Carbon dots 
are promising tools for detecting contaminants, identifying harmful bacteria, and monitoring essential nutrients. Here, we 
review the safety risks associated with applying carbon dots in the food industry, focusing on their integration into global 
food safety frameworks. We highlight recent advancements in the detection capabilities of carbon dots, showcasing their 
sensitivity and specificity in identifying foodborne pathogens and contaminants. We discuss strategies to mitigate potential 
health risks, such as optimizing carbon dot synthesis to minimize their toxicity and ensuring thorough regulatory assess-
ments. Current research shows that carbon dots improve food safety, but research is needed to address safety concerns and 
ensure consumer confidence.

Keywords  Carbon quantum dot · Cytotoxicity · Human health · Food industry · Nanosensor · Safety risk · 
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Introduction

Carbon dots, also known as carbon nanodots, are minuscule 
luminescent particles with diverse potential applications in 
the food industry (Shi et al. 2019). These particles consist 
of carbon atoms organized in a nanoscale arrangement, typi-
cally measuring less than 10 nm in diameter, smaller than 
most viruses and bacteria (Xu et al. 2004). Their unique 
characteristics include intensive fluorescence, large sur-
face area, biocompatibility, low cost, one-step production, 
and stability (Kang et al. 2020). In recognition of their 

groundbreaking research on carbon dots, the 2023 Nobel 
Prize in Chemistry was awarded to three scientists (Nobel-
Prize 2023). Because of these exceptional attributes, carbon 
dots have the potential to revolutionize the food industry, 
especially in the context of ensuring food safety by providing 
new and effective ways to detect contaminants, foodborne 
pathogens, measure nutrients, and extend the shelf life of 
food products (Ezati et al. 2022; Gao et al. 2024; Rossini 
et  al. 2019; Zhang et  al. 2022; Zhao et  al. 2021a). For 
example, carbon dots-based sensors are being developed to 
detect foodborne pathogens such as Staphylococcus aureus 
or Escherichia coli (Gao et al. 2024; Zhao et al. 2021a), and 
carbon dots-coated packaging materials are being used to 
extend the shelf life of avocados until 14 days (Ezati et al. 
2022). Carbon dots also can form inclusion complexes with 
a wide range of molecules. This property has been exploited 
to develop probes and sensors for detecting contaminants in 
food samples, such as pesticides, herbicides, or heavy metals 
(Bera and Mohapatra 2020; Chen et al. 2020; Hoang et al. 
2023; Pajewska-Szmyt et al. 2020). However, integrating 
carbon dots into food products necessitates a comprehensive 
understanding of its safety aspects.

Food safety is a major global concern, with approximately 
600 million people falling ill each year due to contami-
nated food (WHO 2022). To address this, key interventions 
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include selecting appropriate foods, following good hygiene 
practices, ensuring food ingredient safety, and preventing 
cross-contamination during food processing (Njoagwuani 
et al. 2023). In the case of carbon dots, research on their 
toxicity is still in its early stages, and findings are often con-
flicting. While some studies have suggested that carbon dots 
are biocompatible and non-toxic (Emam et al. 2017; Yang 
et al. 2009b), others have found that their cytotoxicity can 
be influenced by factors such as size, dosage, and exposure 
to light (Liu et al. 2021; Wang et al. 2011). Research on the 
cytotoxicity of carbon dots has revealed that their photodeg-
radation under light exposure can lead to the production of 
toxic molecules, posing a potential risk to human cells (Liu 
et al. 2021). The surface functionalization of carbon dots 
also plays a crucial role in their cytotoxicity, with carbox-
ylic groups and polyethylene glycol-modified carbon dots 
with neutral charge showing the most promise for biological 
applications (Havrdova et al. 2016). Regarding biodistribu-
tion and clearance, carbon dots are efficiently excreted from 
the body, with different injection routes resulting in varying 
blood clearance patterns and tumor uptakes (Huang et al. 
2013). These findings highlight the need for further research 
to fully understand the potential risks and benefits of using 
carbon dots in food applications.

While previous review articles have highlighted the 
potential of carbon dots in various food applications (Li 
et al. 2021; Sharma et al. 2021; Shi et al. 2019; Zhang et al. 
2022), an essential consideration often overlooked is the 
safety risks associated with their usage. Several strategies 
were proposed to mitigate the risks associated with the use 
of carbon dots in prior review articles. For instance, one 

approach involves synthesizing carbon dots from biomateri-
als (Wu et al. 2023). This review article aims to provide a 
comprehensive understanding of the food safety aspect of 
carbon dots, including their potential applications in the food 
industry, along with addressing the associated safety risks 
and proposing mitigating strategies, illustrated in Fig. 1.

Carbon dots

Carbon dots and properties

Carbon dots are a new class of nanomaterials with unique 
properties, including tunable fluorescence, biocompat-
ibility, and surface state energy-gap tuning, making them 
promising candidates for various applications. These 
nanomaterials exhibit bright photoluminescence, resem-
bling the properties commonly found in semiconductor 
quantum dots (Cao et al. 2013). The unique fluorescence 
characteristics of carbon dots can be tailored for appli-
cations in bioimaging, intracellular imaging, and opti-
cal sensing, with the ability to create “artificial” tunable 
carbon dots through composition and surface state modi-
fications (Bao et al. 2015; Fu et al. 2015). Furthermore, 
carbon dots have been found to possess physicochemi-
cal and photochemical stability, making them suitable 
for applications in bioimaging and fluorescence imaging 
in vivo (Yang et al. 2009a). The potential use of carbon 
dots for in vitro and in vivo applications has been dis-
cussed, highlighting their non-toxic and high-perfor-
mance fluorescence imaging capabilities (Yang et  al. 

Fig. 1   Potential applications of 
carbon dots in the food industry 
include monitoring nutrients, 
detecting food contaminants, 
detecting food pathogens, and 
enhancing food packaging. The 
safety of carbon dots is assessed 
in terms of cytotoxicity, 
genotoxicity, bioaccumulation, 
and biodistribution. Strategies 
to mitigate these risks include 
selecting appropriate precursors, 
optimizing synthesis methods, 
modifying surface agents, and 
developing specific protocols to 
detect carbon dots in foods
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2009a). Additionally, the biocompatibility and antioxidant 
capabilities of carbon dots have been investigated, further 
emphasizing their characteristic properties, including 
luminescence and ease of synthesis (Rodríguez-Varillas 
et al. 2022). Overall, the multifaceted properties of car-
bon dots, encompassing fluorescence, luminescence, 
biocompatibility, and tunability, render them versatile 
nanomaterials applicable in bioimaging, sensing, drug 
delivery, pharmacetical analysis and optical devices (Ali 
et al. 2020; Fu et al. 2015; Hoan et al. 2018; Omer et al. 
2022). Figure 2 illustrates the procedure for synthesizing 
carbon dots, listing the most commonly applied method 
in recent studies.

Synthesis of carbon dots

Carbon dots can be synthesized through two primary 
approaches: top-down and bottom-up. The top-down 
approach involves breaking down larger carbon materials 
into smaller carbon dots, aiming for a narrow size distribu-
tion and controlled optical properties (Wang et al. 2023). 
However, achieving precise control over size and structure 
can be challenging with this method. In contrast, the bottom-
up approach assembles carbon dots from smaller molecular 
precursors, offering greater versatility and control over size, 
structure, and optical properties, making it more suitable 
for specific applications (Shin et al. 2015; Wang et al. 2019, 
2015). Top-down approaches transform macroscopic car-
bon structures into carbon dots using methods such as arc 

Fig. 2   Common procedures for 
carbon dot synthesis. Precursors 
can be chosen from natural or 
synthetic materials (i). Various 
techniques are employed to 
synthesize carbon dots based 
on two primary approaches: 
top-down and bottom-up (ii). 
The synthesized carbon dots 
are purified using techniques 
such as, dialysis, ultrafiltration, 
and column chromatography 
(iii). The purified carbon dots 
exhibit intense fluorescence 
and nanoscale size (iv). Carbon 
dots are characterized using 
methods, including transmission 
electron microscope (TEM), 
Raman spectrophotometer, par-
ticle size distribution analyzer, 
and fluorescence spectropho-
tometer (v)
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discharge, laser ablation, electrochemical oxidation, chemi-
cal oxidation, and ultrasonic synthesis (Wang et al. 2017). 
On the other hand, bottom-up approaches create carbon dots 
from molecular precursors like citric acid, sucrose, and glu-
cose through methods such as microwave synthesis, ther-
mal decomposition, hydrothermal treatment, template-based 
routes, and plasma treatment (Wang et al. 2017).

While various methods have been employed for carbon 
dots synthesis, recent studies have emphasized distinctive 
properties, with hydrothermal and microwave methods 
standing out in top-down approaches, and chemical oxida-
tion and electrochemical oxidation in bottom-up methods 
(Fig. 2). Each method presents a unique set of benefits and 
challenges (Wang et al. 2017). For instance, chemical oxida-
tion offers ease of operation and suitability for large-scale 
production but is associated with nonuniform size distribu-
tion. Microwave synthesis provides a short reaction time and 
easy size control, yet it incurs a high energy cost. Hydro-
thermal treatment is known for high quantum efficiency and 
cost-effectiveness but yields lower quantities of carbon dots 
(Wu et al. 2021). Electrochemical oxidation, while offer-
ing high-purity carbon dots with controllable size and good 
reproducibility, requires careful optimization for high yields. 
Selecting the most appropriate synthesis approach depends 
on specific requirements and considerations in the produc-
tion of carbon dots.

Purification of carbon dots

The purification of carbon dots is a pivotal step to ensure 
their quality and suitability for diverse applications. Various 
purification methods have been proposed in the literature, 
each offering unique advantages to address specific chal-
lenges related to impurities and by-products, including dialy-
sis, ultrafiltration, and column chromatography. González-
González et al. (2022) proposed a dialysis methodology 
to purify carbon dots synthesized by a chemical oxidation 
method for 360 h. This approach underscores the importance 
of overcoming purification challenges to obtain high-quality 
carbon dots. Similarly, Essner et al. (2018) conducted car-
bon dot syntheses using hydrothermal and microwave routes, 
employing citric acid paired with urea or ethylenediamine as 
a nitrogen source. They followed this with purification steps 
involving dialysis or ultrafiltration, highlighting the signifi-
cance of purification in ensuring the quality of the resulting 
carbon dots. Furthermore, Sato et al. (2022) demonstrated 
the purification of surface-modified carbon dots using silica 
gel column chromatography, resulting in an increased pho-
toluminescence quantum yield. This purification method 
illustrates the impact of purification on enhancing the optical 
properties of carbon dots. Additionally, Otten et al. (2022) 
emphasized the role of purification in removing impurities 
and enhancing the optoelectronic properties of carbon dots, 

underscoring the importance of consistent characterization 
during the purification process.

Application of carbon dots in the food 
industry

Carbon dots are a class of nanomaterials with unique proper-
ties, such as fluorescence, biocompatibility, and antimicro-
bial activity (Zhang et al. 2022). These properties make car-
bon dots promising candidates for a variety of applications 
in the food industry, including (1) developing probes and 
sensors for detecting contaminated toxins and other hazard-
ous substances, (2) developing antimicrobial and antifungal 
food packaging materials, (3) detecting foodborne pathogens 
and (4) measuring the essential nutrients in food, which were 
visualized in Fig. 3. Residuals of these toxic elements can be 
found in any steps of food production, such as cultivation, 
production, storage, transportation, and consumption (Hoehl 
et al. 2012). Several harmful contaminated substances in 
food products were listed by the European Commission such 
as metal ions, mycotoxins, plant toxins, processing contami-
nants, banned additives, organic pollutants, and pesticides 
(EU-Commission 2023), which need to be detected and con-
trolled within certain limits.

Probes and sensors

Detection of metal ions

The most concerning metal ions include chromium, lead, 
mercury, arsenic, and cadmium (EFSA 2023). Mercury (II) 
ion is one of the contaminants in milk that causes irreversi-
ble damage to neurological and renal systems. It is known as 
a neurotoxicant and a poison for the liver and kidneys (Wise 
et al. 2022). The presence of lead (II) ions in drinking water 
can cause neurodevelopmental effects on children (Levallois 
et al. 2018), whereas cadmium (II) ions present in rice can 
also pose a health risk like “itai-itai disease,” a bone disease 
(Yu et al. 2017). These metal ions can be contaminated in 
foods and accumulated over time, causing actual disease.

The development of carbon dots-based sensors to detect 
metal ions has several advantages over traditional meth-
ods, which reported higher sensitivity and their ability to 
be used to detect metal ions in real time (Shi et al. 2019). 
Carbon dots are fluorescent nanomaterials that can be 
functionalized to bind to specific metal ions. When car-
bon dots bind to a metal ion, its fluorescence is quenched. 
This change in fluorescence can be used to detect the pres-
ence of metal ions in food samples, which was reported in 
various studies (Table 1). Carbon dots-based probes and 
sensors have shown a significant effect on detecting these 
commonly contaminated metal ions in water with a low 
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limit of detection, including chromium (VI) with 2.3 nM, 
lead (II) with 0.08 ppb, cadmium (II) with 0.29 nM, iron 
(III) with 0.07 μM and 63 nM (Du et al. 2023; Pandey 
et al. 2020; Sahu and Khan 2020; Zhang et al. 2020; Zhao 
et al. 2021b). Lately, multifunctional fluorescent probes 
have been developed to detect metal ions simultaneously 
to reduce time with low detection limits. For example, lead 
(II) and iron (III) could be detected in water simultane-
ously by dual emission carbon dots based on the differ-
ent fluorescent intensity changes with a detection limit of 
0.80 ppm and 4.74 ppm, respectively (Hoang et al. 2023). 
Furthermore, modifying the surface of nitrogen-carbon 
dots can lower the detection limit of the sensor to detect 
mercury (II) to 10 nM (Aziz et al. 2019).

Carbon dots-based sensors to detect metal ions have been 
developed using two main quenching mechanisms, illus-
trated Fig. 4 based on the detailed explanation (Albrecht 
2008). Most of these sensors were developed based on fluo-
rescent quenching, where metal ions combine with carbon 
dots, reducing fluorescence (Zhang et al. 2022). Briefly, one 
common mechanism is static quenching (Fig. 4a). Initially, 
the fluorophore and metal ions (the quenchers) form a non-
fluorescent complex (Fig. 4b), which results from the diffu-
sion of both molecules, which is a time-dependent reaction. 
When this complex is excited with energy, it reaches the 
excited state. It comes back immediately to the ground state 
without the emission of photos but in the form of fluores-
cence (Fig. 4c). This difference between the non-fluorescent 

Fig. 3   Applications of carbon dots in the food industry. Carbon 
dots-based sensors monitor primary nutrients such as carbohydrates, 
amino acids, peptides, vitamins, and bioactive compounds. Car-
bon dots are incorporated into food packaging to enhance quality or 
monitor the freshness of foods. Carbon dots sensors detect food con-

taminants such as metal ions, residual pesticides, or food additives. 
Carbon dots are used to detect foodborne pathogens indirectly and 
directly, including Staphylococcus aureus, Escherichia coli, Bacillus 
subtillis, or Salmonella typhimurium 
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Table 1   Recent studies on carbon dots sensors for detecting metal ions

Carbon dots are used to develop sensors that detect numerous metal ions in foods and waters with high sensitivity. Doping carbon dots-based 
sensors is a common technique to enhance their sensitivity. The growing interest in the simultaneous detection of multiple metal ions is high-
lighted

Type of analyte Analyte Probes Linear range Limit of detection Measured sample References

Metal Ions Zinc (II) Chelation-enhanced 
carbon dots

0.02–5 μM 5 nM Fetal bovine serum, 
milk powder

Lu et al. 2023

Mercury (II) Nitrogen–Carbon 
dots

2–14 μM 0.44 μM Breast milk Pajewska-Szmyt et al. 
2020

Chromium (VI) Nitrogen–Carbon 
dots

0.01–4.5 μM 2.3 nM Tap water Zhang et al. 2020

Iron (III) Nitrogen–Carbon 
dots

0.8–27 μM 0.07 μM Environmental water Zhao et al. 2021b

Iron (III), lead (II) Carbon dots 0–128 μM 63 nM Tap water Du et al. 2023
Lead (II), cadmium 

(II)
Carbon dots 10–200 μM 59 μM – Boobalan et al. 2020
Carbon dots 1–8 nM 0.29 nM Tap water, pond 

water
Pandey et al. 2020

Cobalt (II) Nitrogen and Sulfur 
co-doped carbon 
dots

1–50 μM 26 nM – Sun et al. 2021

Cobalt (II), Copper 
(II)

Nitrogen and Sulfur 
co-doped carbon 
dots

1–100 µM 200 nM Water Bisauriya et al. 2022

Copper (II), iron (II) Nitrogen-Doped 
Carbon Dots

0–40 μM Copper (II): 0.5 μM Animal feed, tablets Guo et al. 2023
Iron (II): 0.31 μM

Lead (II), iron (III) Dual emission car-
bon dots

0–100 ppm Lead (II): 0.80 ppm Water Hoang et al. 2023
Iron (III): 4.74 ppm

Manganese (II) Carbon dots 0–500 μM 0.58 μM Tap water Kumar et al. 2023

Fig. 4   Mechanisms of carbon dots sensors for detecting metal ions 
in foods. (a) Static Quenching: The fluorescence of carbon dots is 
quenched by metal ions forming a non-fluorescent complex (b). 

This non-fluorescent complex becomes fluorescent under excitation 
light (c). (d) Dynamic Quenching: The fluorescence of carbon dots 
changes due to collisions with metal ions (e)
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metal ion complex state and the fluorescent metal ion com-
plex state gives the concentration of the unknown metal 
ion in the food samples (Albrecht 2008). Another common 
mechanism is dynamic quenching (Fig. 4d), in which metal 
ions (quencher) are added to the fluorophore. The non-fluo-
rescent complex is formed due to the collision between the 
quencher and the fluorophore (Fig. 4e). The unknown metal 
ion (quencher) concentration can be determined by measur-
ing the difference between the fluorescence (Galletto and 
Bujalowski 2002).

Detection of pesticide residues

Pesticides can be categorized into four main classes, includ-
ing herbicides, fungicides, insecticides, and acaricides (Fer-
nandes et al. 2023). Pesticide residues can not only cause 
disease but also lead to death beyond a specific limit. This 
information was well-summarized by El-Nahhal and El-
Nahhal (2021), who stated that exposure to pesticides can 
cause reproductive toxicity, cardiotoxicity, an increased risk 
of various types of cancers, and Parkinson’s disease. Pesti-
cide residues in tea have become a threat to human health; 
therefore, they are strictly controlled with specific maximum 
limits detailed in the legislation of the European Union, 
USA, and Japan (Fernandes et al. 2023).

Unlike the mechanism of carbon dots-based sensors to 
detect metal ions, these sensors detect pesticides based on 
an “off–on-off” quenching mechanism, which is illustrated 
in detail in Fig. 5 (Shi et al. 2019). There are two main path-
ways to explain the mechanism of this sensor, where both 
start from forming the non-fluorescent complex between 

carbon dots with metal ions or nanoparticles (Fig. 5a). For 
the first pathway, carbon dots were fluorescent again when 
pesticides were combined with metal ions or nanoparticles 
bound with carbon dots (Fig. 5b). The change in fluorescent 
intensity was converted to the residual pesticide concentra-
tion in food samples. Enzymes play a central role in the sec-
ond pathway (Fig. 5c). Enzymes react with substrates, form-
ing the products of enzyme reaction, and then they will bind 
with metal ions or nanoparticles bound with carbon dots, 
making carbon dots fluorescent again (Fig. 5d). When the 
sensors interact with pesticides, pesticides will inactivate the 
enzyme reaction so that the metal ions and nanoparticles are 
combined again with carbon dots, forming a non-fluorescent 
complex (Fig. 5e).

The design of carbon dots-based sensors to detect pesti-
cides was modified depending on the specific case; however, 
all cases were based on the “on–off” principles of carbon 
dots, as illustrated in Fig. 5. The fluorescence of carbon dots 
could be turned on or turned off by different compounds 
like metal ions, nanoparticles, or products of enzyme reac-
tions, described in detail by Shi et al. (2019). While Chen 
et al. (2020) developing a carbon dots sensor with gold nano-
particles, enzymes can be used to develop these sensors to 
detect pesticides, which could act as fluorescent probes or 
quenchers in enzyme-based reactions (Huang et al. 2019). 
These sensors detect changes in the fluorescence of car-
bon dots caused by the presence of pesticides in a sample, 
enabling the determination of the pesticide concentration 
(Zhang et al. 2022). Cao and Guo (2024) developed carbon 
dots sensors to detect imidacloprid based on Förster Reso-
nance Energy Transfer (FRET) methods, where the emission 

Fig. 5   Mechanisms of carbon dots sensors based on “off–on-off” 
quenching for detecting pesticides, modified from Shi et  al. (2019) 
with two proposed mechanisms. In the first mechanism, fluorescent 
carbon dots react with metal ions to form a non-fluorescent complex 
(a). The fluorescent turns again in the presence of pesticides as the 
metal ions preferentially react with the pesticides (b). In the second 

mechanism, metal ions react with the enzymatic product instead of 
carbon dots, turning on the fluorescence (c). When pesticides are pre-
sent, they inhibit the enzyme–substrate reaction, preventing the for-
mation of the fluorescent product and causing the fluorescence of the 
carbon dots to turn off again by forming a non-fluorescent complex 
(d and e)
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spectra of carbon dots overlap with the absorption spectrum 
of Imidacloprid, resulting in fluorescent quenching of car-
bon dots. Table 2 lists the recently published studies about 
carbon dots-sensors for detecting pesticides.

Carbon dots-based sensors have shown potential in rap-
idly detecting pesticides with broad linear correlations and 
reasonable detection limits. Carbon dots were applied to 
detect several pesticides in water, including carbaryl (Chen 
et al. 2020) and dimethoate (Liu et al. 2020). Furthermore, 
imidacloprid, a pesticide contaminant in vegetables, was 
detected with a carbon dots-based sensor with a detection 
limit of 1.87 ng/kg (Cao and Guo 2024). In terms of her-
bicides, glyphosate, one of the most common herbicides 
worldwide, was detected in cucumber, pepper, and ginger 

with carbon dots- cadmium telluride probes with excel-
lent linear correlations ranging from 10 to 1000 nM and 
a detection limit of 2 pM (Bera and Mohapatra 2020). 
Yang et al. (2023) synthesized carbon dots from mulberry 
leaves and sodium hydroxide, subsequently, a carbon dots-
sensor was developed to simultaneously detect glyphosate 
and parathion-methyl in herbal samples with the detec-
tion limit of 0.60 μM and 0.14 μM, respectively. Recently, 
Vadia et al. (2023) studied a multipurpose sensor to detect 
iron (III) ion and propiconazole in pharmaceutical and 
vegetable samples with a linear correlation range from 
0.5 to 180 μM for iron (III) and 0.1–40 μM for propicona-
zole with the detection limit of 0.18 μM and 0.054 μM, 
respectively.

Table 2   Recent studies on carbon dots sensors for pesticide detection

Various studies focus on developing carbon dots-based sensors to detect pesticides, herbicides, and fungicide residues in food samples. The pri-
mary objectives in this field include increasing sensor sensitivity, lowering detection limits, and developing sensors capable of detecting multiple 
pesticides simultaneously

Type of analyte Analyte Probes Linear range Low of detection Measured sample References

Pesticides Carbaryl Red emissive 
carbon dots

0–20 μg/mL 0.52 ng/mL Tap water, lake 
water

Xu et al. 2024

Dimethoate Carbon dots / 
Dithizone

0.15–5 μM 0.064 μM River water, farm 
water

Liu et al. 2020

Imidacloprid Carbon dots 0.037–0.2 mg/L 0.00187 mg/kg Lettuce, cole, 
spinach, and 
pakchoi with 
spiked

Cao and Guo 2024

Organochlorine 
pesticides: 
Heptachlor, 
Endosulfan, 
Chlordimeform 
and 2,4-dichlo-
rophenoxyacetic 
acid

The surface-
engineered 
fluorescent blue 
emissive-carbon 
dot

1–19 μM Heptachlor: 
0.002 μM

Water, soybean 
sprout, mung 
bean sprout

Nethaji et al. 2024

Endosulfan: 
0.099 μM

Chlordimeform: 
0.16 μM

2,4-dichlorophe-
noxyacetic acid: 
0.082 μM

Herbicide Glyphosate Carbon dots / Cad-
mium telluride

10–1000 nM 2 pM Cucumber, pep-
per, ginger

Bera and Mohapa-
tra 2020

Glyphosate A dual emissive 
carbon dot

0–10 ppm 0.03 ppm Water Clermont-Paquette 
et al. 2023

Herbicide,Pesticide Glyphosate, 
Parathion-methyl

Carbon dots Glyphosate: 
1.0–110.0 μM

Glyphosate: 
0.60 μM

Food/herbal 
samples

Yang et al. 2023

Parathion-methyl: 
0.3–65.0 μM

Parathion-methyl: 
0.14 μM

Metal Ions, Pesti-
cide

Iron (III) ion, 
Propiconazole

Carbon dots Iron (III) ion: 
0.5–180 μM

Iron (III) ion: 
0.18 μM

Pharmaceutical, 
and vegetable 
samples

Vadia et al. 2023

Propiconazole: 
0.1–40 μM

Propiconazole: 
0.054 μM

Fungicide Dodine Bamboo stem bio-
mass carbon dots

0.1–10.0 nM 4.3 nM Peach, plum, 
apple, onion 
leaf, kidney 
beans

Adaikalapandi et al. 
2024

Thiophanate-
methyl

Yellow-green fluo-
rescent carbon 
dots

0–10 µM 50.7 nM Pear, orange 
tomato

Wang et al. 2024
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Detection of food additives

Food additives have been used in many processed foods 
for several years to maintain their structure, enhance their 
appearance, and improve their flavor. While food additives 
can have remarkable benefits for the food industry, consum-
ing large amounts of these compounds can have adverse 
effects on food quality and even consumer health. Addi-
tionally, several food additives have been banned in some 
countries due to health concerns. There are varied ways to 
produce carbon dots sensors to detect food preservatives, 
however, static quenching (Fig. 4) and “off–on-off” quench-
ing (Fig. 5) are the two most common methods, which 

were described in subSects. ”Detection of metal ions” and 
“Detection of pesticide residues”. Sensors made from carbon 
dots can be used to detect a variety of food preservatives, 
including nitrile, formaldehyde, borax, and sulfite, listed in 
Table 3. Nitrile, a common preservative used to extend the 
shelf life of meat products, can be rapidly detected with car-
bon dots sensors with a linear range of 0–4.3 μM and a limit 
of detection of 0.5 nM (Hu et al. 2019). Formaldehyde, a 
banned preservative in several countries, is still used in some 
food products, such as noodles, fish, and meat, to increase 
elasticity and shelf life. Nitrogen, phosphorous-carbon dots 
can detect formaldehyde in sprouted beans with a detection 
limit of 0.47 μM (Qu et al. 2020). Borax, which has been 

Table 3   Recent studies on carbon dots sensors for detecting food additives

Carbon-dot-based sensors detect various food additives, including preservatives and artificial colors. This is essential for maintaining food safety 
and mitigating consumer risks. Doping carbon dots in these sensors increases their sensitivity. A wider range of carbon dots has been studied and 
measured for this purpose

Type of analyte Analyte Probes Linear Range Low of detection Measured sample References

Preservatives Nitrite Crystal violet car-
bon dots

0–20 mg/L 0.6 mg/L Mustard, sausage, 
water

Liu et al. 2024

Carbon dots 0–4.3 μM 0.5 nM Ham Hu et al. 2019
Carbon dots 0.1–100 μM 31.6 nM Bacon, sausage, 

pickle, milk 
samples

Liu et al. 2019

Potassium sorbate, 
vitamin B12

Boron–carbon dots 0.2–24 μM 6.1 nM Vinegar and bread Jia et al. 2019

Formaldehyde Nitrogen, phospho-
rous-carbon dots

0–40 μM 0.5 μM Sprouted beans Qu et al. 2020

Borax Carbon dots 100–500 μM 1.5 μM Fishball Prathumsuwan et al. 
2019

Bisulfite, sulfite Carbon dots / 
zeolitic imida-
zolate framework

10 μM–8.5 mM 2.7 μM Sugar Wang et al. 2023

Carbon dots / silver 
nanoparticles / 
hydrogen peroxide

20–200 μM 3 μM Food samples and 
herbs

He et al. 2023

Artificial colors Tartrazine (Yellow 
#5)

Nitrogen-carbon 
dots / Iron (III) 
ion

0.10–30.00 μM 48 nM Orange juice Yang et al. 2020

Sunset yellow (Yel-
low #6)

Nitrogen-carbon 
dots

0.5–40 μM 28 nM Soft drinks, wine, 
sugar rolls, dried 
plum, swiss roll

Su et al. 2022

Sudan Red II Nitrogen, oxygen-
carbon dots

0–8 mg/L 0.6 mg/L Spiked spice sam-
ples

Ramoğlu et al. 2021

Sudan Red I Nitrogen, phospho-
rous-carbon dots

43 nM–52 μM 43 nM Paprika Zhao et al. 2021b

Indigo Carmine Nitrogen-carbon 
dots

0.73–10 μM 0.24 μM Fruit juice and soft 
drink

Ali et al. 2021

Europium-carbon 
dots

1.5–10 μg/ml 0.4 μg/ml Juice samples Albalawi et al. 2023

Sunset Yellow Carbon dots 0–60 μM 0.4 μM - Huang et al. 2017
Artificial colors 

and Metal Ion
Allura red (Red 

#40), Iron (III)
Carbon dots 0–30 μM Red #40: 0.61 μM;

Iron (III): 0.26 μM
Juice, syrups, tap 

water, wastewater, 
distilled water

Vijeata et al. 2022
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used as a food preservative in some countries to prevent 
the growth of bacteria and molds, is now illegal for use in 
foods in the USA following regulations from the Food and 
Drug Administration (FDA 2023). The combination of car-
bon dots and silver nanoparticles for biosensors can detect 
both sulfite and bisulfite in several food and herb samples 
with a detection limit of 3.02 μM (He et al. 2023). Although 
carbon dots-based sensors can find the presence of several 
food preservatives, there is still early research about this, 
there are hundreds of preservatives that need to be studied.

Not like preservatives, carbon dots can detect almost pri-
mary artificial colors in food including tartrazine and sun-
set yellow for yellow color; sundan red I and sundan red II 
for red color; Indigo carmine for blue color (Albalawi et al. 
2023; Ali et al. 2021; Ramoğlu et al. 2021; Su et al. 2022; 
Yang et al. 2020; Zhao et al. 2021a). For example, in India, 
sudan red I and sudan red IV are permitted for use in certain 

food products, such as chili powder and turmeric powder, 
which can be measured using carbon dots-based sensors 
with low detection on 43 nM for sudan red I (Zhao et al. 
2021a) and 0.6 mg/L for sudan red II (Ramoğlu et al. 2021). 
Tartrazine was detected in orange juice by nitrogen-carbon 
dots / iron (III) ion sensor with a linear range from 0.1 to 
30 μM with a detection limit of 48 nM (Yang et al. 2020).

Active packaging

The mechanism of carbon dots-based packaging is based 
on two main properties of carbon dots: their sensitivity 
to different pH and their antimicrobial and antioxidant 
activity. The development of active packaging with car-
bon dots is still in the early stages, but the reported results 
are remarkable, which are listed in Table 4. Due to their 
sensitivity to pH, the fluorescence of carbon dots could 

Table 4   Recent studies on carbon dots sensors for active packaging

Incorporating carbon dots with other packaging materials enhances packaging quality by increasing UV-blocking capabilities. Additionally, car-
bon dots improve the antimicrobial activity of packaging, thereby extending the shelf life of various food types, including meat products, sea-
food, and fruits

Packaging materials Research Objects Results References

Carbon dots / chitosan / gelatin-based compos-
ite films

Avocado Extended shelf life of more than 14 days; Anti-
microbial activity on Listeria mon ytogenes 
and Escherichia coli; Antifungal activity on 
mold (Aspergillus flavus and Colletotrichum 
orbiculare); negligible cytotoxicity to L929 
cells (after 72 h)

(Ezati et al. 2022)

Carbon dots / cellulose nanofiber / essential oil 
nanoemulsion / gelatin films

Tomato Extended shelf life up to 6 days; Antimicrobial 
effects against Escherichia coli

(Bao et al. 2023)

Nitrogen-carbon dots / chitosan Pork Maintained pork freshness; Antioxidant activ-
ity; Antibacterial activity of Staphylococcus 
aureus and Escherichia coli

(Lin et al. 2022)

Carbon dots / carboxymethyl cellulose / agar-
based film

Not available The addition of carbon dots reduced the 
mechanical strength and surface hydropho-
bicity, maintained the water vapor barrier 
and improved UV blocking, antioxidant, and 
antibacterial activities

(Tammina and Rhim 2023)

Carbon dots / chitosan Blueberries Extended shelf life until 15 days; Stabilized 
the anthocyanin content (chitosan / 3% 
nitrogen-carbon dots); Delayed the spoilage

(Chen et al. 2023)

Zinc-carbon dots / carrageenan films Shrimps UV-blocking; Antimicrobial activity; Antioxi-
dant activity; Extended shelf life

(Khan et al. 2024)

Carbon dots / alginate fiordilatte cheese Against Escherichia coli; Extended the shelf 
life until 10 days

(Lacivita et al. 2023)

Carbon dots / antimicrobial bacterial cellulose 
membranes

Ground beef Significantly reduced the growth of Escheri-
chia coli

(Ghorbani et al. 2024)

Carbon dots / gelatin / poly(vinyl alcohol)-
based functional films

Ground pork Improved shelf life during the 48 h storage 
period at 20 °C; Prevented bacteria growth

(Min et al. 2023)

Carbon dots / anthocyanin / cellulose nanofiber Pork, fish, shrimp Improved UV barrier; Maintained antioxidant 
properties

(Wagh et al. 2023)

Carbon dots / alginate Banana Enhanced surface hydrophobicity of films; 
Damaged slightly gas barrier proper-
ties; Increased the anti-browning ability; 
Extended the shelf life

(Mao et al. 2023)
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be changed depending on different pHs. Carbon dots have 
been combined with several packaging materials, such as 
chitosan, gelatin, and alginate to create active packaging 
that can be controlled by changes in fluorescence (Bao 
et al. 2023; Chen et al. 2023; Lacivita et al. 2023). Com-
bining carbon dots and chitosan as modified active packag-
ing for fresh-cut cucumber has been shown to significantly 
prolong the overall appearance and inhibit the growth of 
Staphylococcus aureus and Escherichia coli with increas-
ing carbon dots concentration (Fan et al. 2019). Carbon 
dots have also been used as an edible coating in combina-
tion with alginate, which doubled the shelf life of fiordi-
latte cheese to 10 days (Lacivita et al. 2023). Moreover, 
carbon dots-based packaging has been shown to positively 
extend the shelf life of fruits, including avocados up to 
14 days (Ezati et al. 2022), tomatoes up to 6 days (Bao 
et al. 2023), and blueberries up to 15 days at 25 °C (Chen 
et al. 2023). Adding carbon dots in the packaging even 
prevented the browning reaction of banana peel during 
ripening (Mao et al. 2023).

The incorporation of carbon dots in active packaging 
created a positive effect for not only fruit products but also 
meat products. The freshness of pork can also be moni-
tored by the increase in fluorescent intensity of packaging 
made from carbon dots and chitosan (Lin et al. 2022). 
Carbon dots added into antimicrobial bacterial cellulose 
membranes significantly reduced the growth of Escheri-
chia coli and extended the shelf life of ground beef up to 
9 days at 4 °C (Ghorbani et al. 2024). In addition to its 
antioxidant and antimicrobial activity, carbon dots-based 
packaging can also maintain UV-blocking properties 
(Khan et al. 2024; Tammina and Rhim 2023). Tammina 
and Rhim (2023) concluded that incorporating carbon dots 
into an agar-based film can reduce the film’s mechanical 
strength and surface hydrophobicity, but the effects on the 
mechanical strength of films may depend on the type of 
film. For example, in Khan et al. (2024) it was reported 
that zinc-carbon dots did not affect the strength of the 
carrageenan-zinc-carbon dots film.

Foodborne pathogen detection

Foodborne pathogens are a crucial problem that needs to 
be controlled in food safety. In recent years, researchers 
have made significant advancements in the development of 
detection methods for foodborne pathogens using carbon 
dots. Carbon dots were reported to detect several major 
foodborne pathogens including Staphylococcus aureus 
(Gao et al. 2024; John et al. 2020; Zhao et al. 2021a), 
Escherichia coli (John et al. 2020; Zhao et al. 2021a). The 
representative studies focusing on foodborne pathogen 
detection of carbon dots are shown in Table 5. Aflatoxin 
B, a main toxic produced by certain molds, particularly 
Aspergillus flavus and Aspergillus parasiticus, also can 
be detected with carbon dots probes (Li et al. 2024). The 
antimicrobial properties of carbon dots, combined with 
their nanoscale size, make them an ideal candidate for 
pathogen detection. Carbon dots have a core of carbon 
nanoparticles and a thin surface passivation layer, allowing 
them to interact with bacteria and toxins effectively (Abu 
et al. 2020). Research has shown that carbon dots can be 
used in conjunction with other nanomaterials, such as dye-
filled nanoparticles, magnetic nanomaterials, and silver 
nanoshells, to enhance detection sensitivity and reduce 
detection time (Gao et al. 2024; John et al. 2020).

The integration of nanosensors into food packaging has 
emerged as a key application in the detection of pathogens 
and toxins in food products. Fluorescent nanoparticles, such 
as carbon dots, have shown great potential in this field. For 
example, studies have demonstrated that carbon dots cou-
pled with immunomagnetic separation can effectively detect 
foodborne pathogenic bacterial species like Salmonella typh-
imurium and Escherichia coli in milk and apple juice (Zhao 
et al. 2009). Another approach to detecting the presence of 
Escherichia coli, Staphylococcus aureus, Bacillus subtilis, 
and Proteus vulgaris in food products is through pH-sensi-
tive detection (Pathak et al. 2020). This change can be eas-
ily detected and quantified, providing a rapid and sensitive 
method for pathogen detection.

Table 5   Recent studies on carbon dots sensors for detection of foodborne pathogens

Carbon dots sensors can detect foodborne pathogens, including aflatoxin B, Escherichia coli, and Staphylococcus aureus. In addition to detecting 
pathogens, staining bacteria with carbon dots solutions can differentiate between bacterial types

Foodborne pathogen Probes Minimum Inhibitory Concen-
tration/ Low of detection

Measured sample References

Aflatoxin B Nitrogen-doped carbon dots 77 pg/mL Coix seed Li et al. 2024
Escherichia coli Nitrogen, phosphorous-carbon dots 0.5 mg/mL paprika Zhao et al. 2021a

Carbon dots / amoxicillin 1.5 × 10–8 CFU/ml – John et al. 2020
Staphylococcus aureus Carbon dots / amoxicilin 1.5 × 10–8 CFU/ml – John et al. 2020

Carbon dots / manganese dioxide 9 CFU/mL – Gao et al. 2024
Nitrogen, phosphorous-carbon dots 7.5 μg/mL paprika Zhao et al. 2021a
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Monitoring of food nutrients

Food nutrient monitoring is essential for ensuring the quality 
and safety of food products. Additionally, it plays a crucial 
role in assessing the nutritional content of food and enabling 
individuals to make informed dietary choices. Traditional 
methods for food nutrient monitoring, such as ion exchange 
chromatography and mass spectrometry, often require com-
plex procedures, expensive equipment, and lengthy analysis 
times. Therefore, the development of rapid measurement for 
control of the nutrient content in foods is necessary. One 
promising food nutrient monitoring approach is carbon dots 
(Table 6). Carbon dots have been used to develop novel 
nanosensors and nano biosensors for food quality control 
including glucose, amino acids, and vitamins B2 (Lin et al. 
2019; Rossini et al. 2019; Tabaraki and Abdi 2019; Yuxin 
et al. 2022). These carbon-based nanomaterials have shown 
great potential in enhancing the sensing signals and improv-
ing the accuracy of food nutrient monitoring devices (De 

Paula et al. 2019). Besides the essential nutrients, the com-
bination of carbon dots detects other nutrients like quercetin, 
curcumin, and tea polyphenol (De Paula et al. 2019; Han 
et al. 2019; Wei et al. 2020).

Food safety assessments of carbon dots

Besides the remarkable application of carbon dots in the 
food industry, the food safety of carbon dots needs to be fully 
understood. One risk is their potential cytotoxicity, which 
refers to the ability of carbon dots to cause harm or damage 
to living cells at a certain dose. Furthermore, the genotoxic-
ity of carbon dots is also an important aspect to be aware 
of, as it refers to their potential to damage genetic material 
and cause mutations. The accumulation and distribution of 
carbon dots in biological systems also need to be discussed. 
The overall food safety assessment of carbon dots is illus-
trated in Fig. 6.

Table 6   Recent studies on carbon dots sensors for monitoring food nutrients

Carbon dots-based sensors can quantify the nutrient content in foods, such as carbohydrates, amino acids, vitamins, and other bioactive com-
pounds. Doping carbon dots with nitrogen, sulfur, silver, or copper enhances sensor sensitivity. Sensors are designed to optimize performance 
depending on the specific nutrient being detected

Type of nutrients Nutrients Monitoring 
methods

Linear range Low of detection Samples References

Carbohydrates Glucose Carbon dots / 
glucose oxidase 
/ horseradish 
peroxidase

10−6–10−5 M – Biofluids Rossini et al. 2019

Gluocose, glu-
tathione

Silver-Carbon dots 
/ peroxidase

Gluocose: 
50–800 μM

Gluocose: 
11.30 μM

Saliva, urine Haiyang et al. 2024

Glutathione: 
1–60 μM

Glutathione: 
3.54 μM

Glucose, lactase Carbon dots / 
oxidase

Gluocose: 
21–38 × 10–6 M

Gluocose: 
2.60 × 10–6 M

Saliva Rossini et al. 2021

Lactate: 1.0–
7.5 × 10–4 M

Lactate: 
8.14 × 10–7 M

Glucose Iron-Carbon dots / 
tetramethylben-
zidin / hydrogen 
Peroxide

0.08–10.00 mM 0.029 mM Urine Yuxin et al. 2022

Amino acids, 
Peptides

Aspartic acid Nitrogen-Carbon 
dots

0.5–50 μM 90 nM Sport supplements Tabaraki and Abdi 
2019

Vitamins Riboflavin Zinc and Chlorine 
Co-doped carbon 
dots

0–10 μg/mL 12.5 ng/mL Apple juice Meng and Wu 2024

Others Quercetin Nitrogen- and 
Sulfur-codoped 
carbon dots

0–29.7 μM 17.3 nM Red wine, onion Sasikumar et al. 
2023

Curcumin Nitrogen- and 
Sulfur-codoped 
carbon dots

2.0–18.0 μM 0.04 μM Urine Han et al. 2019

Polyphenol Carbon dots / 
copper(II) ion

1–30 μM 0.31 μM Green tea Wei et al. 2020
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Cytotoxicity

Carbon dots, while generally considered to have lower cyto-
toxicity than semiconductor quantum dots, can still exhibit 
cytotoxic effects depending on various factors involved in 
their synthesis and design (Hola et al. 2014; Sahu et al. 
2012). Wang et al. (2011) emphasized in a systematic review 
of the cytotoxicity of carbon dots that while carbon dots have 
shown great potential for imaging applications, their cyto-
toxicity needs to be carefully evaluated to ensure their safe 
use. The cytotoxicity of carbon dots was affected by several 
factors, including dose, precursor materials, surface passiva-
tion agents, and size of carbon dots. First, the cytotoxicity 
of carbon dots was affected by the precursor materials. For 
instance, different organic precursors like glucose, sucrose, 
glycol, glycerol, and citric acid can introduce impurities or 
toxic components during the carbonization process, thereby 
affecting the cytotoxicity of the resulting carbon dots (Sahu 
et al. 2012). Additionally, the composition of carbon dots has 
been identified as a key determinant of their cytotoxic behav-
ior. Studies have shown that carbon dots synthesized from 
natural precursors, such as orange juice, demonstrated excel-
lent biocompatibility and low cytotoxicity (Sahu et al. 2012). 
The cytotoxicity of carbon dots was also dose-dependent (Li 
et al. 2018a). The results of this study indicated that 80% of 
cells survived at 1 mg/mL, whereas 90% of cells experienced 

death at 10 mg/mL. However, carbon dots obtained from 
Kvass, a type of beverage, showed no cytotoxicity below 
20 mg/mL (Liao et al. 2015). Different precursor materials 
with different doses can affect the cytotoxicity of carbon 
dots.

The cytotoxicity of carbon dots is also dependent on 
the selection of the surface passivation agent and the size. 
Surface modifications with biocompatible molecules can 
enhance the biocompatibility of carbon dots and reduce 
their cytotoxic effects (Nygård et al. 2000). Mukherjee et al. 
(2022) mentioned that the presence of heteroatoms on the 
surface of carbon dots, such as amine, hydroxyl, carboxyl, 
or thiol functional groups, can improve their physicochemi-
cal qualities, quantum yield, and likelihood of visible light 
absorption, eliminating the need for additional surface passi-
vation (Mukherjee et al. 2022). Similarly, the size of carbon 
dots plays a crucial role, with smaller dots exhibiting higher 
cellular uptake and potentially inducing cytotoxic effects 
(Nygård et al. 2000). The significance of size-dependent 
cytotoxicity has been observed in studies on carbon dot 
quantum dots, where smaller quantum dots displayed higher 
toxicity than larger ones (Derfus et al. 2004). While it is 
essential to acknowledge that carbon dots generally exhibit 
low cytotoxicity (Du et al. 2023), it’s important to note that 
the specific cytotoxic effects can vary depending on experi-
mental conditions and cell types (Hola et al. 2014). Some 

Fig. 6   Food safety assessment of carbon dots. The cytotoxicity of car-
bon dots is influenced by various factors such as size, dosage, precur-
sors, and surface passivation agents. The genotoxicity of carbon dots 
is primarily associated with dosage and does not cause acute effects 

on genetic materials. Bioaccumulation and biodistribution studies 
indicate that small-sized carbon dots can cross the blood–brain bar-
rier and accumulate in the heart, brain, liver, and tumors; however, no 
adverse effects have been detected
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studies have indicated that high concentrations or prolonged 
exposure to carbon dots can lead to cell death or affect cel-
lular functions (Hola et al. 2014; Li et al. 2018a; Liao et al. 
2015). Nonetheless, such effects are typically observed at 
concentrations significantly higher than those typically used 
for imaging or therapeutic applications.

Genotoxicity

Genotoxicity refers to the ability of a substance to cause 
damage to genetic material, such as DNA, leading to muta-
tions or other genetic alterations. In the case of carbon dots, 
several studies have investigated their genotoxicity. Carbon 
dots do seem not to cause any acute damage to the genetic 
materials, according to the results of published articles about 
the genotoxicity of carbon dots. One study by Pelaz et al. 
(2017) evaluated the genotoxicity of carbon dots in animals. 
The study found that carbon dots dosages of 51 mg/kg body 
weight did not cause any genotoxic effects or abnormalities 
in the organs of the animals. Another study by Zaidi et al. 
(2022) conducted a biosafety evaluation of photolumines-
cent carbon dots produced by nitric acid oxidation. This 
study found no acute toxicity, genotoxicity, or abnormali-
ties in the organs of mice. The genotoxicity depends on the 
dose of carbon dots. For example, Havrdová et al. (2021) 
investigated the genotoxic effects of carbon dots on cells. 
The study found that quantum carbon dots up to 400 µg/
mL concentration did not significantly affect cell viability 
or DNA content. However, at higher concentrations, carbon 
dots could lead to changes in the morphology of cells, caus-
ing cell death.

Bioaccumulation and biodistribution

In terms of the accumulation and distribution of carbon dots 
in biological systems, Yang et al. (2009a) a study was con-
ducted on the biodistribution of carbon dots in vivo. The 
study results indicated minor accumulations of carbon dots 
in the organs, suggesting low bioaccumulation. This finding 
is consistent with the absence of any significant damage to 
the organs. However, the study also emphasized the need for 
further systematic investigations on the in vivo biodistribu-
tions of different types of carbon dots (Yang et al. 2009a). 
Carbon dots were reported to cause neurodegenerative 
effects by Song et al. (2018). The study found that carbon 
dots were distributed in the cytoplasm but not the nucleus 
after 24 h of incubation. In mice experiments, carbon dots 
were orally administered, reaching the brain within 2 h, as 
observed by the increased fluorescent intensity in the mouse 
brain, indicating passage through the blood–brain barrier. 
A recent study reported that carbon dots can accumulate 
in both the nucleus and cytoplasm causing death for L929 
cells (Shabbir et al. 2022). Li et al. (2018a) demonstrated 

that carbon dots derived from Maillard reaction products 
can readily penetrate both plant and animal cells, distribut-
ing themselves either within the cell wall or the cytoplasm.

Additionally, significant accumulation was found in the 
liver, brain, and heart 2–6 h after administration, indicating 
potential blood–brain barrier crossing for ultra-small nano-
particles smaller than 5 nm (Li et al. 2018b). Although Li 
et al. (2018b) proved that carbon dots can be quenched by 
saliva, gastric juice, and duodenal-bile juice in vitro diges-
tion experiments, the accumulation and distribution of car-
bon dots need to be studied deeply to understand their fate 
and effects on biological systems (Li et al. 2018b). Due to 
this potential health risk, further investigation is necessary 
into the association between carbon dots and bioactive mol-
ecules. Moreover, Liao et al. (2021) focused on the in vivo 
biodistribution, clearance, and biocompatibility of multiple 
carbon dots containing nanoparticles for biomedical applica-
tions. The study investigates the accumulation and fluores-
cence intensity of carbon dots over time, which found that 
single carbon dots took 5 h to reach maximum accumulation 
at the tumor site, and the fluorescence intensity of carbon 
dots gradually decreased over time. Although the accumu-
lation and distribution of carbon dots have been studied, 
the conversion and excretion of carbon dots have not been 
thoroughly researched to obtain a comprehensive database 
on how carbon dots affect our health.

Strategies for mitigating the risk

To ensure the safe use of carbon dots in various applications, 
researchers have developed or proposed various mitigating 
strategies, including surface modification and functionaliza-
tion (Yao et al. 2019), using natural precursors (Sahu et al. 
2012), and controlling the size of carbon dots via differ-
ent synthesis and purification methods (Derfus et al. 2004). 
After studying the toxicity and the possibility of accumulat-
ing carbon dots in organs, developing standardized carbon 
dots with a reliable analytical method must be a concern. 
Figure 7 illustrates the overall diagram of the four main miti-
gating strategies.

Selecting the appropriate precursors

Selecting the appropriate precursors is an effective strat-
egy for mitigating the risks associated with carbon dots. 
The selection of precursors can strongly influence the 
properties and performance of carbon dots, including their 
optical properties, surface chemistry, and biocompatibility 
(Hola et al. 2014; Peng et al. 2016; Yao et al. 2019; Zeng 
et al. 2021). Several carbon dots were synthesized from 
various precursors listed in Table 7 and divided into two 
main groups, including natural materials and synthetic 
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compounds. The choice of precursors can influence the 
structural diversity, properties, and cytotoxicity of carbon 
dots. Different precursors, such as small organic mole-
cules, polymers, or biomass-derived materials can lead to 
the formation of carbon dots with different structures and 
functionalities (Zeng et al. 2021). For example, the use of 
different carbon sources and surface passivation agents 
can result in carbon dots with varied optical properties 
(Yao et al. 2019). Sahu et al. (2012) mentioned that using 
synthetic precursors can produce carbon dots with higher 
cytotoxicity compared with natural precursors. However, 
carbon dots synthesized from natural sources obtain a 
smaller size (1.5–8 nm) than synthetic ones (2.5–17.5 nm) 
(Table 7).

Furthermore, the appropriate choice of precursors can 
also allow for controlling other physicochemical properties 
of carbon dots. For instance, the use of specific synthe-
sis precursors can influence the size, surface charge, and 
stability of carbon dots (Peng et al. 2016). This allows 
for the customization of carbon dots for different applica-
tions, such as biomedical or optoelectronic applications. 
Moreover, the selection of precursors can also impact the 
biocompatibility and toxicity of carbon dots. By choosing 
safe and non-toxic precursors, the resulting carbon dots 
can be safer for use in biological applications (Hola et al. 
2014). By carefully selecting the precursors, it is possi-
ble to tailor the properties of carbon dots to meet specific 
application requirements and reduce the risk of carbon 
dots, especially in the food industry.

Optimizing synthesis methods

The synthesis method can significantly impact the properties 
and performance of carbon dots, including their size, mor-
phology, surface chemistry, and optical properties (Atabaev 
2018; De and Karak 2013; Wang et al. 2014). As discussed 
in Sect. “Synthesis of carbon dots”, various methods have 
been utilized to produce carbon dots, each with its own 
set of advantages and disadvantages. Hydrothermal and 
microwave methods are two common techniques for pro-
ducing carbon dots, involving high temperatures and energy 
to carbonize the precursors, resulting in carbon dots with 
high yield and smaller in size (Table 7). Different synthesis 
methods, such as hydrothermal, solvothermal, microwave-
assisted, or pyrolysis methods, can result in carbon dots with 
varying sizes and shapes (Wang et al. 2014). Our previous 
study reported that lowering the synthesis temperature and 
using assist solvents like ethanol can obtain stronger fluo-
rescent carbon dots, smaller size without increasing toxicity 
(Nguyen et al. 2024). Derfus et al. (2004) reported that the 
smaller carbon dots displayed higher cytotoxicity, similar 
to the conclusion of Nygård et al. (2000) higher cellular 
uptake and cytotoxicity. Furthermore, carbon dots smaller 
than 5 nm were recorded, passing the blood–brain barriers 
and accumulating in the brain, heart, and liver after 2–6 h (Li 
et al. 2018b). By carefully selecting the synthesis method, 
uniform and well-defined carbon dots can be achieved, 
enhancing their performance and reducing the potential vari-
ability in their properties (De and Karak 2013).

Fig. 7   Strategies for mitigat-
ing the risk of carbon dots. 1 
Selecting appropriate precur-
sors, such as natural materials, 
can produce smaller carbon dots 
with lower cytotoxicity, thereby 
reducing potential toxicity. 2 
Optimizing synthesis methods 
can significantly impact the 
size, morphology, surface chem-
istry, and optical properties of 
carbon dots, directly influenc-
ing their potential toxicity. 3 
Surface modification by adding 
functional groups or incorpo-
rating heteroatom doping can 
enhance solubility, stability, and 
biocompatibility while reduc-
ing cytotoxicity. 4 Developing 
protocols for detecting carbon 
dots in foods is crucial for 
comprehensively understanding 
their formulation and assessing 
their toxicity
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Table 7   Synthesized carbon dots in recent publications

Precursors Type of precursors Synthetic method Size (nm) Quan-
tumn 
yield (%)

Excitation/ Emis-
sion wavelength 
(nm)

References

Aloe, Urea Naturals Hydrothermal 5.0 60.8 323/441 Yang et al. 2020
Bael Patra fruit Naturals Hydrothermal 6.0 57.1 321/350 Vijeata et al. 2022
Citric acid, Urea Synthetics Microwave 10.0 – 360/450 Tabaraki and Abdi 2019
Citric acid, tyramine Synthetics Microwave 17.5 11.0 355/440 Rossini et al. 2019
Citric acid, Urea, boric 

acid
Synthetics Microwave 5.0 – – Sahu and Khan 2020

Citric acid, ethylenedi-
amine;

Synthetics Microwave 5.0 73.7 350/445 Wei et al. 2020

Citric acid, melamine Synthetics Hydrothermal 4.9 44.0 352/427 Pajewska-Szmyt et al. 
2020

Citric acid, phenylenedi-
amine

Synthetics Hydrothermal 3.2 30.0 385/489 Chen et al. 2020

Citrate, Urea Synthetics Hydrothermal 4.1–6.3 40.0 – Zhao et al. 2021b
Citric acid, acetoguan-

amine, trimethylene 
glycol

Synthetics – – 5.3 350/470 Ramoğlu et al. 2021

Citric acid, glycine Synthetics Hydrothermal 0.5–4.0 – 340/430 Yuxin et al. 2022
Citric acid, glucose, 

ethylenediaminetet-
raacetic acid

Synthetics Hydrothermal 4.08 – 440/513 Hoang et al. 2023

Coconut husk Naturals Hydrothermal 3.3 – 350/440 Chunduri et al. 2016
Corn stalk powder Naturals Microwave 1.5–6.0 2.1 326/445 Du et al. 2023
2,3-Diaminobenzoic 

acid hydrochloride, 
sulfuric acid

Synthetics Hydrothermal 7.6 18.0 595/644 Liu et al. 2019

Europium chloride, tan-
nic acid

Synthetics Hydrothermal 7.0 – 307/340 Albalawi et al. 2023

Glucose, polyethyl-
eneimine, phosphoric 
acid

Synthetics Low Temperature 12.0 14.0 430/530 Zhao et al. 2021a

Glucose Synthetics Hydrothermal 5.9–11.0 – 350/450 Ezati et al. 2022
Glycine, ethylenedi-

aminetetraacetic acid, 
sodium salt

Synthetics Hydrothermal 7.2 28.3 360/428 Ali et al. 2021

Glycine Synthetics Hydrothermal 3.3 – 390/470 He et al. 2023
Glycine, sugars Synthetics Low temperature, long 

time
2.5 – 360/438 Nguyen et al. 2024

Lemon peel Naturals Hydrothermal 2.0 32.0 378/468 Vadia et al. 2023
Locust powder, nitric 

acid, diethylenetri-
amine

Naturals Chemical Oxidation 2.3 3.1 390/470 Su et al. 2022

Litchi chinensis Naturals Hydrothermal 4.1 12.0 – Tang et al. 2018
Murraya koenigii Naturals Hydrothermal 2.0–8.0 5.4 390/450 Pandey et al. 2020
Mushroom Naturals Hydrothermal 8.0 – – Boobalan et al. 2020
Mulberry leaves Naturals Hydrothermal 7.0 – 320/440 Yang et al. 2023
Phenylenediamine Synthetics Solvothermal – 26.7 – Zhang et al. 2020

Synthetics Hydrothermal 10.0 – 365/470 Cao and Guo 2024
Polyethyleneimine imi-

nodiacetic acid,
Synthetics Hydrothermal 6.7 15.9 360/458 Qu et al. 2020

Phenylboronic acid Synthetics Hydrothermal 3.3 12.0 247/323 Jia et al. 2019
Pork rib bones Naturals Hydrothermal, Chemi-

cal Oxidation
4.2 – 315/453 Liu et al. 2020
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Furthermore, the choice of synthesis method can also 
influence the surface chemistry and functionalization of 
carbon dots. For example, using surface passivation agents 
or functionalization during the synthesis process can modify 
the surface properties of carbon dots, such as their stability, 
dispersibility, and biocompatibility (Atabaev 2018). This can 
be particularly important for applications in bioimaging or 
sensing, where the interaction of carbon dots with biologi-
cal systems is crucial. Moreover, the synthesis method can 
also impact the optical properties of carbon dots. Differ-
ent synthesis methods can lead to carbon dots with distinct 
photoluminescence properties, such as emission wavelength, 
quantum yield, and stability (Wang et al. 2014). By selecting 
the appropriate synthesis method, it is possible to tailor the 
optical properties of carbon dots for specific applications, 
such as fluorescence imaging or optoelectronics. Addition-
ally, the choice of synthesis method can also affect the scal-
ability and reproducibility of carbon dot production. Some 
synthesis methods may be more suitable for large-scale 
production, while others may be more suitable for small-
scale or laboratory-scale synthesis (De and Karak 2013). 
Considering the scalability and reproducibility of the synthe-
sis method is essential to ensure the consistent and reliable 
production of carbon dots.

Surface modification and functionalization

Surface modification and functionalization of carbon dots 
are important strategies to enhance their properties and 
reduce risks in various applications (Anilkumar et al. 2011; 
Ding et al. 2014; Park et al. 2016). By introducing func-
tional groups to the surface carbon dots, their stability, 

biocompatibility, dispersibility, and functionality can be 
enhanced (Anilkumar et al. 2011; Ding et al. 2014). Func-
tional groups such as amino, carboxyl, hydroxyl, or thiol 
groups can be added to enhance the solubility, stability, and 
reactivity of carbon dots (Park et al. 2016). These functional 
groups can also serve as anchor points for further function-
alization or conjugation to biomolecules, dyes, or targeting 
ligands (Liu et al. 2015). In addition, these surface modi-
fication can even lower the detection limit of mercury (II) 
using nitrogen-carbon dots-based sensors (Aziz et al. 2019). 
Another approach to surface modification is doping carbon 
dots with heteroatoms like nitrogen, sulfur, or phosphorus. 
Doping can alter the electronic structure and surface chemis-
try of carbon dots, leading to improved photoluminescence, 
charge transfer, and catalytic activity (Dong et al. 2013; 
Hu et al. 2016). Nitrogen-doped carbon dots, for example, 
have shown enhanced fluorescence and improved biocom-
patibility, making them suitable for bioimaging and sens-
ing applications (Wang et al. 2014). Furthermore, surface 
modification of carbon dots using appropriate precursors can 
improve their biocompatibility and reduce cytotoxicity (Yao 
et al. 2019). For example, Min et al. (2023) synthesized car-
bon dots from coffee grounds and seed extracts can be used 
to make active packaging to increase the shelf life of ground 
pork and prevent the growth of microorganisms.

In addition to functional groups and heteroatom dop-
ing, surface modification can involve the encapsulation 
or coating of carbon dots with polymers, silica, or other 
materials. This provides additional protection, stability, 
and functionality to carbon dots (Sawant et al. 2016). For 
instance, encapsulating carbon dots with polymers can 
enhance their biocompatibility and enable the controlled 

Table 7   (continued)

Precursors Type of precursors Synthetic method Size (nm) Quan-
tumn 
yield (%)

Excitation/ Emis-
sion wavelength 
(nm)

References

Saccharomycetes, ethyl-
enediamine;

Synthetics Hydrothermal, Micro-
wave

– 16.0 380/460 Yu et al. 2019

Sodium citrate Synthetics Hydrothermal – 9.3 380/450 De Paula et al. 2019
Sodium citrate, thioure Synthetics Hydrothermal 2.5 26.9 350/440 Han et al. 2019
Sugarcane molasses Naturals Heat treatment 1.9 5.8 305/390 Huang et al. 2017
Sucrose Synthetics Microwave 5.3 - 365/520 Hu et al. 2019
Tryptophan, ethylenedi-

amine
Synthetics Chemical Oxidation 6.2 48.0 350/400 Mintz et al. 2019

Tryptophan, glucose Synthetics Hydrothermal 4.0–5.0 18.0 300/450 Ma et al. 2020
Unripe peach Naturals Hydrothermal 8.0 15.0 325/404 Atchudan et al. 2016
Water hyacinth leaves Naturals Chemical Oxidation 3.7 27.0 400/420–700 Prathumsuwan et al. 2019
Wheat brain Naturals Hydrothermal – 33.2 400/500 John et al. 2020

Numerous precursors are used to synthesize carbon dots, categorized into two main groups: natural and synthetic materials. The size, quantum 
yield, and fluorescent properties of the synthesized carbon dots vary depending on the synthesis method employed, such as hydrothermal, micro-
wave, chemical oxidation, or heat treatment
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release of encapsulated drugs or biomolecule carbon dots 
(Sawant et al. 2016). Surface modification and function-
alization of carbon dots can be tailored to specific appli-
cations. In bioimaging, surface modification by targeting 
ligands or biomolecules enables specific cellular or tissue 
targeting (Liu et al. 2015). In sensing applications, surface 
modification enhances the selectivity and sensitivity of 
carbon dots toward specific analytes (Shen and Xia 2014). 
Furthermore, surface modification can improve the per-
formance of carbon dots in energy storage, catalysis, and 
optoelectronic devices (Balogun et al. 2016).

Development of specific protocols to quantify 
carbon dots 

Developing a quantitative method for measuring the 
amount of carbon dots is an important strategy for miti-
gating risks and ensuring accurate dosing in various appli-
cations. Several studies have focused on developing such 
methods to provide reliable and precise quantification of 
carbon dots. One approach to quantifying carbon dots 
involves spectroscopic techniques. Fluorescence spectros-
copy is commonly used to measure the emission intensity 
of carbon dots, which can be correlated with their concen-
tration (Li et al. 2012; Nguyen et al. 2024; Pan et al. 2020). 
By establishing a calibration curve using known concen-
trations of carbon dots, the emission intensity can be used 
to determine the amount of carbon dots in a sample. This 
method allows for rapid and non-destructive quantification 
of carbon dots. Another method for quantifying carbon 
dots is based on their absorbance properties. UV–Vis spec-
troscopy can be used to measure the absorbance of carbon 
dots at specific wavelengths, which can be correlated with 
their concentration (Nie et al. 2014). The amount of car-
bon dots can be determined by comparing the absorbance 
of a sample to a calibration curve (Churchill et al. 2009). 
This method is relatively simple and widely applicable.

In addition to spectroscopic techniques, other methods 
have been explored for quantifying carbon dots. For exam-
ple, electrochemical methods have been developed, where 
the current or potential response of carbon dots is meas-
ured and correlated with their concentration (Zhao et al. 
2022). This approach offers the advantage of high sensi-
tivity and selectivity. Furthermore, advanced techniques 
such as atomic force microscopy (AFM), scanning electron 
microscopy (SEM), transmittance electron microscopy 
(TEM), and Raman microscope can be used to visualize 
and quantify carbon dots based on their morphology and 
size (Saraswat and Yadav 2020). These imaging techniques 
provide valuable information about the size distribution 
and density of carbon dots in a sample.

Perspective

Moving forward, a concerted effort is needed to establish 
comprehensive safety guidelines and regulatory frame-
works for incorporating carbon dots in food applications. 
Furthermore, research is needed to elucidate the biodis-
tribution, degradation pathways, and long-term health 
impacts of carbon dots. By pursuing these endeavors, 
we can ensure the responsible and beneficial integration 
of carbon dots in various food technologies while safe-
guarding consumer health and environmental sustainabil-
ity. Exciting applications lie ahead, including intelligent 
food packaging with quality monitoring, enhanced food 
preservation by precisely targeting and eliminating food-
borne pathogens, and delivery systems for essential nutri-
ents. Carbon dots could be the key to creating intelligent 
food colorants and pathogen sensors. By pursuing these 
research directions and exploring these applications, we 
can unlock the full potential of carbon dots for a safer, 
healthier, and more sustainable food future.

Conclusion

Carbon dots have emerged as a noteworthy nanomaterial 
with various applications in various industries, includ-
ing electronics, bioimaging, and pharmaceutical analysis. 
Recently, significant attention has been directed toward 
exploring their potential in the food technology sector. 
However, the absence of specific guidelines for determining 
toxicity thresholds and permissible levels of carbon dots in 
food remains a challenge. In this review, we have evaluated 
the potential risks associated with carbon dots and proposed 
mitigation strategies to address these concerns. These strate-
gies encompass (1) selecting safe precursor materials, (2) 
adopting appropriate synthesis methods, and (3) modifying 
the surface agents to regulate surface properties, size, and 
characteristics of carbon dots. (4) Furthermore, it is impera-
tive to develop standardized procedures for quantifying car-
bon dot levels in food products and to establish guidelines 
for research on the decomposition and potential contami-
nants introduced by carbon dots in food matrices.
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