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Abstract: Modern lifestyle trends, such as sedentary behaviour and unhealthy diets, have been
associated with obesity, a major health challenge increasing the risk of multiple pathologies. This
has prompted many to reassess their routines and seek expert guidance on healthy living. In the
digital era, users quickly turn to mobile apps for support. These apps monitor various aspects of
daily life, such as physical activity and calorie intake; collect extensive user data; and apply modern
data-driven technologies, including artificial intelligence (AI) and machine learning (ML), to provide
personalised diet and lifestyle recommendations. This work examines the state of the art in data-
driven technologies for personalised nutrition, including relevant data collection technologies, and
explores the research challenges in this field. A literature review, following the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline, was conducted using three
databases, covering studies from 2021 to 2024, resulting in 67 final studies. The data are presented
in separate subsections for recommendation systems (43 works) and data collection technologies
(17 works), with a discussion section identifying research challenges. The findings indicate that the
fields of data-driven innovation and personalised nutrition are predominately amalgamated in the
use of recommender systems.

Keywords: machine learning; artificial intelligence; personalization; nutrition; recipes; restaurant;
data-driven; recommender; recommendation system

1. Introduction

Imbalanced diets are linked to an increased risk of various non-communicable dis-eases
(NCDs) prevalent in modern society, including obesity, type 2 diabetes, and cancer [1–3].
According to the World Health Organization (WHO), at least 2.8 million people die each year
due to being overweight or obese, and an estimated 35.8 million (2.3%) of global Disability-
Adjusted Life Years (DALYs) are attributed to overweight or obesity [4]. Additionally, as
noted by Mariadoss et al. (2023) [5], poor nutrition is also a significant con-tributing factor
for specific groups, such as pregnant women, in increasing the risk of cardiovascular
diseases (CVDs).

Betts et al. (2016) [6] define personalized nutrition as “developing unique nutri-
tion guidelines for each individual”, while precision nutrition “seeks to develop effective
approaches based in the combination of an individual’s genetic”, i.e., genotype, and “en-
vironmental and lifestyle factors”, i.e., phenotype. Additionally, based on Mathers et al.
(2017) [7], population-based interventions have sometimes proved to be ineffective in
achieving sustainable eating behaviour changes, while at the same time, evidence suggest
considerable interindividual variation in response to the same dietary exposure. Thus, it
can be argued that a “one-size-fits-all” approach to proper diet and nutrition is insufficient,
since every person has unique needs, and a personalised diet plan is necessary to meet
individual requirements. Thus, personalised nutrition (PN), also addressed as “tailored
nutrition” or “individualized nutrition”, has become increasingly important in recent years
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to a degree that it is now considered by some as a crucial aspect of a healthy lifestyle
and of well-being. PN is also essential for people who already have chronic diseases
that require specialised diets and therefore need appropriate nutrition plans [6,8,9]. For
instance, a person with type 2 diabetes could benefit from a nutrition low in carbohydrates
(Wheatley et al. (2021) [10]), while a person with lactose intolerance requires a diet free
of lactose-containing foods such as milk, cheese, and other dairy products. Moreover, PN
has been shown to be able to improve the immune system of cancer patients (Shastri et al.
(2021) [11]). Hence, PN can help individuals towards the prevention, but also mitigation,
of various chronic diseases.

A big rise in the use of recommendation systems for PN has been observed in recent
years. Big datasets, along with Artificial Intelligence (AI) models, neural networks, and
recommendation systems, are now being used for the generation of tailored meal recom-
mendations that are based on individual user profiles. Such a trend could be expected,
as these technologies have been used in the food industry sector for many years now.
According to Miyazawa et al. (2022) [12], in 2010, the crossing of AI, machine learning (ML),
and Computer Science (CS) with the food industry led to the development of respective
applications that utilised big data analysis. Later works, e.g., [13,14], showed how AI-
and ML-based approaches can be used for early food disease detection, estimating soil
moisture, and more, while Theodoridis et al. (2019) [15] showed how Nutrition Recommen-
dation Systems and similar technologies are used in the field of PN for, e.g., food category
recognition, ingredient and cooking instructions recognition, etc. Agrawal et al. (2023) [16]
examined the significant impact of AI on the food industry, including the role of AI in PN.
Finally, Roy et al. (2023) [17] examined the effectiveness and challenges of these systems in
delivering personalized health and dietary advice.

To achieve PN through recommendation systems and other respective technologies,
big data collected from individuals regarding their specific needs are needed. For exam-
ple, data regarding an individual’s heart rate, burned calories, daily activity, etc., can be
retrieved using smart watches, activity trackers, and more, while data regarding someone’s
body weight, fat, visceral fat, etc., can be retrieved using smart scales. Even information
from the diverse community of microorganisms residing in our gut microbiota can be
retrieved using corresponding technologies and methods [18–25]. These and more data can
be used as inputs to recommendation systems for generating personalised outputs regard-
ing a user’s dietary or wellbeing plan. For example, Amorim et al. (2022) [26] describe a
recommendation system in a hospital that uses personal information from in-hospital sen-
sors, such as insulin levels, to adjust patients’ daily meals, while Greenberg et al. (2023) [27]
present a web application that uses women’s personal data, such as age and height, to
prevent cardiovascular problems. The outcomes of the above works are showing a quickly
expanding field of research. Stefanidis et al. (2022) [28] present a knowledge-based rec-
ommendation framework that exploits an explicit dataset of expert-validated meals to
offer highly accurate diet plans spanning across ten user groups of both healthy subjects
and participants with health conditions. Additionally, Yang et al. (2018) [29] proposed
Yum-me, a personalized nutrient-based meal recommendation system designed to meet
individuals’ nutritional expectations, dietary restrictions, and fine-grained food preferences,
while Harvey et al. (2015) [30] presented a recipe recommendation system that proposes
meal plans based on foods that a user likes. New data collection technologies are proposed
and implemented while new technologies for processing data are arising, expanding the
potential of this research field.

Study Purpose, Strengths, and Limitations

This paper aims to present the latest advancements in data-driven innovation for
AI and ML technologies in the field of PN along with the data collection technologies
that are being used, and to investigate the research challenges for future work. Similar
literature reviews on the field of precision nutrition and machine learning do exist. For
instance, Livingstone et al. (2022) [31] presented a literature review in the field of precision
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nutrition. The authors discussed the role and application of “omics” to the prescription
of individualized diets for health and wellbeing and the use of ML technologies assisting
with integrative purposes. In the same vein, Kirk et al. (2021) [32] conducted an extensive
systematic literature review on the same research field, focusing on the state-of-the-art on
the use of ML in Precision Nutrition. Their work answers nine research questions and
categorises all the re-searched ML models and algorithms regarding task, type, usage, and
more attributes, providing a holistic view.

Our work differentiates from these mainly in three aspects, which are the objectives of
this paper. Firstly, it encompasses data-driven technologies in general, rather than solely
AI-based works in the field of personalised nutrition. This means that it also includes
technologies like knowledge graphs, ontologies, optimization algorithms, and more that
are not included in the realm of ML and AI. Secondly, we also study data collection
technologies that are described and analysed with respect to how they are integrated with
the recommendation systems. Finally, our work identifies a series of research challenges
that are derived from the literature and associated with specific papers.

In our review, the works are clustered and comparatively discussed, referring to their
main scope, data-driven technologies used, system inputs, their technical evaluation and
accuracy, and, finally, related datasets. Moreover, the information is displayed in a tabular
format with additional explanations regarding the scope of the model and the integration
of the various input data types.

A limitation of our work is that it deals mainly with personalized nutrition and does
not cover precision nutrition extensively. Exploring the use of data-driven technologies
in more nutrition fields would give a more holistic perspective and understanding. Addi-
tionally, the time frame of this research is from 2021 to 2024. Therefore, a more extensive
review starting earlier could give more and better information with more features to be ex-
tracted. Finally, the research databases used are limited to three, and these are all computer
science-oriented. The inclusion of works from other databases, e.g., health-oriented ones,
could provide a more diverse view.

The examined literature was filtered using the well-established Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) model [33–35]. In Section 2,
we discuss the PRISMA model and the specific filters we used. In Section 3, we delve
deeper into the use of recommendation systems in the field of PN and present the specific
technologies that are used. According to the PRISMA model, the research for recommen-
dation systems in PN is further divided into three subcategories: (a) Nutrition, (b) Recipe,
and (c) Restaurant Recommendation Systems. In Section 4, we present the various data
collection technologies that are available and review the corresponding data collection or
capturing technologies and devices. In Section 5, we discuss the research challenges that
are derived from the respective literature. Finally, a conclusion is given summarizing the
overall work.

2. Methods

A literature search was performed by adopting the PRISMA guidelines [33–35]. Our
study aimed to identify only the latest works in the field of data-driven innovation tech-
nologies in personalised nutrition and to categorise them; it was not our aim to delve
deeper into a technical comparison of the various systems. The articles were extracted in
March 2024 from three academic databases, namely, Scopus (scopus.com), ScienceDirect
(sciencedirect.com), and IEEE Xplore (ieeexplore.ieee.org).

Inclusion criteria: We used the text “Personalized nutrition recommendation” in the
corresponding search bars of all three academic databases.

Exclusion criteria (by automated tools, i.e., using filtering options of the three
databases):

• Publication date was outside of the time frame 2021 to 2024;
• Document type was not an article, review, or conference paper;
• Publication subject area was not computer science;

scopus.com
sciencedirect.com
ieeexplore.ieee.org
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• Publication was not peer-reviewed;
• Publication language was not English;
• Duplicate entries were excluded as well.

Exclusion criteria (non-automated):

• Publication title and keywords, abstract, or full text indicated that the publication was out
of the scope and objectives of the present review, i.e., indicated that the publication
was irrelevant to AI and ML technologies for PN

The search was based on the following condition: title-abs-key(personalized AND nu-
trition AND recommendation) AND (limit-to (pubstage, “final”)) AND (limit-to (pubyear,
2024) OR limit-to (pubyear, 2023) OR limit-to (pubyear, 2022) OR limit-to (pubyear, 2021))
AND (limit-to (DOCTYPE, “ar”) OR limit-to (doctype, “re”) OR limit-to (doctype, “cp”))
AND (limit-to (subjarea, “COMP”)) AND (limit-to (language, “English”))

The number of records retrieved from the three databases was 3052. From these,
335 duplicate records were removed, while 2125 records were excluded as ineligible by
automation tools (i.e., date, document type, subject area, peer reviewed, language), leading
to 592 unique records for manual screening. After careful examination of the title, keywords,
abstract, and the full text for scientific relevance, 67 records remained and were considered
for the present review. The full selection procedure is detailed in Figure 1, while Figure 2
displays the number of works for every year, showing the increasing frequency in this area
of science.
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The final works can be categorised based on their differences and similarities. Drawing
from the two similar review works [31,32] and inspired by their categorization methods, we
came up to a way to present our findings. More specifically, Livingstone et al. (2022) [31]
divided the various “omics” categories, briefly discussing the works while also using a tab-
ular format to summarize this information. In the same way, Kirk et al. (2021) [32] divided
and briefly discussed the various machine learning tasks, algorithms, evaluation metrics,
etc., while also using a tabular format. Therefore, we decided on dividing and categorizing
our research based on commonalities and differences. Three main categories based on
the scope of the recommendation system are used (nutrition, recipe, and restaurant) to
distinct the final works while grouping the works that use the same or similar methods.
Additionally, we identified several commonalities among the works. Specifically, most
employed one or more technologies for their recommendation systems, utilized datasets,
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and incorporated multiple inputs. Some works also integrated their recommendation sys-
tems into platforms. Furthermore, we observed that some used devices for data collection.
Consequently, we summarize this information in two tables.
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Figure 2. Bar chart displaying the number of works retrieved for every year from 2021 to 2024 (based
on the PRISMA model). The increasing number of works is an indication of the rapid growth of
this field.

3. Results
3.1. Recommenders in Personalised Nutrition

Recommendation systems are vital components in personalised nutrition, delivering
accurate and customized results based on individual needs and preferences. Notably,
they outperform older—frequently manual or semiautomatic—methods in terms of time
efficiency, affordability, and sometimes even accuracy. These advantages, coupled with
surging technology penetration and the increasing processing power of mobile devices’
Central Process Units (CPUs) and Graphical Process Units (GPUs), are propelling the
field of data-driven PN research forward, resulting in a constant stream of novel studies
exploring both improved accuracy and novel technological applications. Applying the
PRISMA model to our literature review search, we identified three main categories of
recommendation systems:

• Nutrition Recommendation Systems. Generate daily or weekly meal plans tailored
to individual profiles, leveraging AI, ML, or other computing technologies, as well as
multidimensional data.

• Recipe Recommendation Systems. Suggest personalised recipes based on individual
profiles, preferences, and other data.

• Restaurant Recommendation Systems. Recommend appropriate selections from
restaurant menus to individuals based on their profiles.

The following subsections delve deeper into these categories, presenting the corre-
sponding literature searches, results, and technologies. First, we summarise the relevant
literature, mentioning the works and their findings. Subsequently, we present net graphs
and tables of the used databases, technologies, and more, highlighting their frequency of
appearance and other relevant metrics.

3.1.1. Nutrition Recommendation Systems

This section explores Nutrition Recommendation Systems, a category focused on
personalised meal plan generation through the synergistic application of various digital
technologies and dietary databases.

The reviewed studies commonly utilized anthropometric data, including sex, age,
height, weight, etc., along with other relevant information, to provide informed recom-
mendations. For example, Haseena et al. (2022) [36] constructed a ranking framework
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based solely on factors like age or weight to identify suitable nutrition plans, following
four stages: gathering user data, generating fuzzy weights using the fuzzy Analytic Hier-
archy Process (AHP) (a method used to assign weights to different criteria or factors in
decision-making processes, considering uncertainty and imprecision in human judgments;
“https://en.wikipedia.org/wiki/Analytic_hierarchy_process (25 August 2024)”), evalu-
ating plan compatibility with cuckoo optimization (The Cuckoo Optimization Algorithm
(COA) is an optimization technique inspired by the brood parasitism behaviour of some
cuckoo species. These cuckoos lay their eggs in the nests of other bird species, relying on
the host birds to incubate and raise their offspring. This natural behaviour forms the basis
of the algorithm, where solutions to optimization problems are metaphorically represented
by eggs in nests; “https://en.wikipedia.org/wiki/Cuckoo_search (25 August 2024)”), and
ranking options with the fuzzy Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) (a decision-making technique that evaluates and ranks alternative op-
tions based on their distance from the ideal solution and the anti-ideal solution, aiming to
identify the most desirable option; “https://en.wikipedia.org/wiki/TOPSIS (25 August
2024)”). This system incorporates popular dietary approaches like the Mediterranean and
low-fat diets, providing diverse personalized recommendations. Similarly, Lakshmi et al.
(2023) [37] employed Fuzzy AHP and Fuzzy TOPSIS for personalized nutrition planning,
considering individual differences in age, body mass index (BMI), dietary preferences,
lifestyle, and blood sugar levels. These fuzzy logic-based methods effectively rank dietary
alternatives, like balanced and diabetes-specific diets, catering to nuanced preferences and
health requirements, promising more precise nutritional guidance.

Zhang et al. (2022) [38], departing from personalized data, employed a novel many-
objective optimization (MaOO) approach using caloric intake data from the MyFitness-
Pal database. Addressing the limitations of traditional recommendation techniques, the
authors proposed a multi-objective approach with four objectives: user preferences, nu-
tritional values, dietary diversity, and user diet patterns. Three representative MaOO
algorithms—strength Pareto evolutionary algorithm 2 (SPEA2), Non-dominated Sorting
Genetic Algorithm (NSGAII), and SPEA2+shift-based density estimation (SDE)—were
leveraged to optimize these objectives simultaneously in two scenarios. In Scenario 1, three
objectives were optimized, while Scenario 2 optimized all four objectives, including user
diet patterns. Evaluation using the hypervolume indicator yielded values of 59%, 62%, and
73% for the three algorithms, respectively.

Salloum et al. (2022) [39] proposed Meal Plan Generation (MPG), a system that auto-
mates the creation of personalized meal plans by integrating personal information, caloric
intake, and user preferences. Using an adaptation of the Transportation Optimization Prob-
lem (TOP), MPG generates plans that meet caloric needs while accommodating individual
preferences. Evaluation involves established nutrition health literature procedures and
transportation optimization techniques, demonstrating MPG’s ability to produce healthy,
personalized meal plans aligned with user preferences. Furthermore, Rout et al. (2023) [40]
introduced a machine learning model for diet recommendations based on users’ nutritional
data and physical conditions, addressing concerns about non-communicable diseases from
unhealthy diets. Employing K-means clustering and Random Forest (RF) algorithms, the
study analysed nutritional data and user profiles to offer tailored diet advice, enhancing
health outcomes and nutritional awareness.

Kaur et al. (2022) [41] presented a food recommendation system targeting Polycystic
Ovary Syndrome (PCOS) in women, integrating personal information and food images
to manage weight and nutrient intake. They enhanced pre-trained Convolutional Neural
Network (CNN) models with additional layers to classify food images and suggest suitable
food items based on macronutrient requirements. Evaluation against other models showed
high accuracy rates, achieving a 95% accuracy rate for classifying sample food classes and a
90.7% accuracy rate for twelve food image classes. Similarly, Aguilar et al. (2022) [42] intro-
duced a Bayesian network into semantic segmentation methods for food images, achieving
improved accuracy in multi-class segmentation and uncertainty estimation. The Bayesian

https://en.wikipedia.org/wiki/Analytic_hierarchy_process
https://en.wikipedia.org/wiki/Cuckoo_search
https://en.wikipedia.org/wiki/TOPSIS
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versions achieved 99% accuracy in UNIMIB2016, 88% in UECFOODPIXComplete, and
77% in Food201, outperforming the original versions. Romero-Tapiador et al. (2023) [43]
presented a recommendation framework which employed the analysis of eating behaviours
through food image datasets. CNNs were used to generate personalized datasets and
to provide insights on healthier dietary habits via a user-friendly platform. The results
showed 99.53% accuracy and 99.60% sensitivity, demonstrating the potential to significantly
enhance dietary monitoring and recommendation systems. Azzimani et al. (2022) [44]
utilized Red–Green–Blue-Depth (RGBD) images and user data on anthropometric informa-
tion, allergies, and chronic diseases to estimate the nutrient content in meals. Advanced
image processing techniques and a Multi-Task Fully Convolutional Network (MFCN) were
employed for image segmentation and volume estimation. Dietitians evaluated the system,
indicating its potential for PN and menu planning.

In addition to user preferences and ratings, health data integration can provide crucial
insights into the user’s health status and history. For instance, Shandilya et al. (2022) [45] in-
troduced MATURE, a food recommendation system refined to incorporate user health data,
ensuring that the recommendations aligned with current health needs. Rigorously validated
against other recommendation systems, MATURE demonstrated a superior performance in
meeting mandatory health requirements. Xu et al. (2022) [46] presented ElCombo, a person-
alized meal recommendation system for the elderly, leveraging a Knowledge Graph (KG)
integrating foods, nutrients, and health data. Compared with elders’ choices, ElCombo sig-
nificantly improved diet quality, diversity, and adherence to health requirements. Utilizing
Particle Swarm Optimization (PSO) and K-means clustering, Hosen et al. (2023) [47] devel-
oped an optimized recommendation system for thyroid patients, delivering personalized
food recommendations based on historical patient data and nutrient-rich foods beneficial
for thyroid health. Validation indicated its superiority over traditional algorithms, offering
more accurate dietary advice for managing thyroid conditions.

Introducing innovative approaches to health management, Larizza et al. (2023) [48]
presented the V-care app, targeting childhood obesity through gamification and person-
alized nutrition recommendations. With quizzes and a virtual coach, the app engages
users in learning about healthy habits, earning an average score of greater than 3 in user
evaluations. Similarly, Lodhi et al. (2023) [49] discussed a personalized nutrition approach
for individuals with chronic kidney disease (CKD), employing KGs to provide tailored
advice. Evaluation through a case study yielded an average usability score of 8.5/10.
Addressing Type 2 Diabetes management, Burgermaster et al. (2023) [50] introduced the
Platano mHealth app, offering personalized nutritional guidance based on meal logs and
blood glucose levels. User feedback indicates that over 78% found the app easy to use,
highlighting its effectiveness in supporting health management.

Islam et al. (2023) [51] utilized electroencephalography (EEG) signals to develop a
personalized meal recommendation system, analysing user brain responses to meals to
determine palatability. Employing a hierarchical ensemble ML model and TOPSIS ap-
proach, they constructed personalized meal suggestions considering user preferences and
nutritional requirements, validated through confusion matrix, f1-score, and Area Under
the Curve (AUC) score evaluations. The incorporation of EEG signals enhanced the sys-
tem’s ability to understand user preferences, while the ensemble ML model improved the
accuracy by combining predictions from multiple models. Similarly, Yang et al. (2022) [52]
proposed a PN service leveraging genetic testing, physical examination, dietary habits, and
medical history to compute disease risk and nutrition requirements, providing tailored
nutrition solutions via a user-friendly mobile application.

Fu et al. (2023) [53] introduced “Food4healthKG”, a KG integrating food, gut micro-
biota, and mental health data from various sources, facilitating food recommendations and
queries. Evaluation against expert responses showed system accuracy levels ranging from
90% to 95%. Similarly, Yang et al. (2023) [54] focused on PN plans for immune system
improvement, combining DNA testing, physical examination, and lifestyle evaluation
to compute tailored plans. Evaluation of their personalized vitamin D supplementation
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solution demonstrated effectiveness in reducing vitamin D deficiency risk. Furthermore,
Yang et al. (2022) [55] developed a PN platform for Chinese users, leveraging genetic,
lifestyle, and physical examination data to generate personalized nutrition packs. The
study highlights the ease of collecting and utilizing genetic data for accurate PN recommen-
dations, employing business process management techniques for efficiency. These works
showcase the potential of integrating diverse data sources for personalized nutrition and
health improvement.

In addition to the above works, Geng et al. (2023) [56] proposed a heuristic optimization-
based recommendation model, leveraging Trajectory Reinforcement-based Bacterial Colony
Optimization (TRBCO) to balance accuracy and diversity in personalized recommendation
systems. Evaluation against benchmark datasets demonstrated TRMOBCO’s superior per-
formance compared to contemporary and state-of-the-art optimization algorithms. Sahal
et al. (2022) [57] explored Personal Digital Twin (PDT) technology for personalized health-
care, emphasizing its potential for improving decision making and treatment selection,
particularly in PN. Chivukula et al. (2022) [58] contributed to the field by developing an
ontology model in the food domain, facilitating informed dietary decisions based on health
conditions. The ontology model was evaluated for its utility in answering queries using
SPARQL Protocol and RDF Query Language (SPARQL), demonstrating its effectiveness in
providing appropriate food recommendations. These approaches offer innovative solutions
for enhancing personalized recommendation systems and improving health outcomes.

Kaur et al. (2023) [59] discussed a Clinical Decision Support System (CDSS) for
neonatal nutrition in the Neonatal Intensive Care Unit (NICU), leveraging a Nutrition
Recommendation Ontology (NRO) to generate personalized feeding plans and achieving
a validation accuracy of 98%. Martinho et al. (2023) [60] contributed to AI systems in
healthcare by developing an ontology to manage diet and energy consumption for patients
with obesity, diabetes, and those needing tube feeding, aiming to improve health outcomes
through personalized dietary recommendations. Similarly, Rostami et al. (2024) [61] intro-
duced the Healthy Group Food Recommendation System (HGFR), prioritizing both user
preferences and nutritional value, outperforming other models in database comparisons,
and promoting healthier eating choices for groups.

Palacios et al. (2023) [62] proposed Baby-Feed, a user-friendly web app which provides
age-appropriate food recommendations for infants to prevent rapid weight gain, with over
87% of parents finding it easy to use and effective, rating it 4/5 stars. Wang et al. (2023) [63]
focused on personalized recommendations for carbohydrate–protein supplements, employ-
ing ML techniques like backpropagation neural networks to tailor intake for endurance
sports enthusiasts, achieving a mean absolute error (MAE) of 470.77 compared to 500.85 for
the traditional model, Gradient Boosted Regression Trees (GBRT). Cunha et al. (2023) [64]
introduced an advanced nutrition control recommendation system utilizing Internet of
Thinks (IoT) devices and ML models in real time to offer personalized dietary and exercise
plans, demonstrating accurate BMI prediction within a small time window of three days.
These studies highlight the efficacy of ML in personalized nutrition recommendations,
suggesting future enhancements for broader dataset dimensions and model robustness.

The literature review reveals a nuanced landscape characterized by diversity not only
in technological approaches, but also in the scope of the research endeavours. Within this
spectrum, certain studies such as [41,42] employ images as their primary input, while
others [45,55] rely on personal and health data. The technological repertoire is equally ex-
pansive, encompassing a range from AI CNN models and Bayesian networks to ontologies
and addressing the TOP. Moreover, despite a shared overarching goal of delivering PN,
the strategies employed exhibit notable variations. For instance, in the study conducted
by Islam et al. (2023) [51], the methodology revolved around generating PN through EEG
signals, while Sahal et al. (2022) [57] adopted a distinct approach utilising DT.
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3.1.2. Recipe Recommendation Systems

An alternative paradigm identified through the literature review involves the inte-
gration of PN objectives with the utilisation and management of recipes. By harnessing
extensive datasets comprising recipes and nutritional information, coupled with data-
driven AI technologies, the creation of individualised recipe recommendations becomes
feasible. For example, Neha et al. (2023) [65] delineated a methodical approach to extract
and predict information from recipes by employing advanced ML models (Parallel-CNN,
Naïve Byes, Fuzzy rule, Artificial Neural Network). This approach adeptly addresses the
diverse requirements of users, including dietary preferences, allergies, food intolerances,
and more. The results of this work show that Parallel-CNN outperforms the other models
with 95% accuracy, 91% precision, and a 95% f1-score, as well as a value of 0.1872 regarding
the model loss attribute.

Wang et al. (2022) [66] proposed an intelligent recipe recommendation model, opti-
mizing weekly meal plans to accommodate user restrictions and nutritional needs using
the Hungarian algorithm and integer programming, ensuring personalized balanced diets.
Buzcu et al. (2022) [67] introduced a Virtual Coaching System (NVS), integrating user-
specific factors like allergies and preferences to offer personalized recipe recommendations
via an ontology-based approach, validated through user surveys showing a preference
for interactive explanation-based interactions over conventional recommendation systems.
Shubhashree et al. (2022) [68] presented a recipe recommendation system incorporating al-
lergies and personal information which employed K-Nearest Neighbour (KNN) clustering
and the Euclidean distance algorithm to generate personalized diet tables, outperforming
other algorithms with 95% accuracy. Likewise, Ribeiro et al. (2022) [69] presented a recipe
recommendation system considering user-specific allergies and cultural preferences to craft
three-week meal plans. It was validated through simulated user profiles, highlighting the
importance of diverse data to meet food preferences, restrictions, and nutritional needs.

Wu et al. (2022) [70] introduced visual-aware food analysis (VAFA), employing deep
learning models ATNet and PiNet to classify food items from multimedia inputs like images
and descriptions, achieving state-of-the-art performance in food classification and recipe
recommendation precision, respectively. The interaction with the recommendation system
is facilitated through a web application. Forouzandeh et al. (2024) [71] presented a Health-
aware Food Recommendation System with Dual Attention in Heterogeneous Graphs
(HFRS-DA), utilizing unsupervised learning on graph-structured data to recommend
healthy and popular recipes, outperforming existing methods with superior performance
on the Allrecipes dataset. RahmathNisha et al. (2023) [72] outlined the development of
the web-based Intelligent Nutrition Assistant Application (INAA) employing AI and ML
algorithms to provide personalized dietary recommendations. It was validated through a
user study with 50 participants, with future plans to enhance the system with advanced
ML techniques and expanded food database.

Li et al. (2022) [73] introduced a novel post hoc agnostic model to explain the output of
Recipe Recommendation Systems, aiming to enhance user understanding and confidence
in the system’s recommendations. The model elucidates the relationships between network
variables and user preferences, validated through comparison with four state-of-the-art
recommendation system explainable models. By incorporating nutrition-aware criteria
variables, the system offers more personalized and health-conscious recommendations, po-
tentially improving the effectiveness of recommendation systems and leading to increased
user satisfaction and adoption. In parallel, Li et al. (2023) [74] pioneered an innovative
methodology by integrating KGs into Recipe Recommendation Systems, enabling users
to transition between different behavioural patterns based on evolving preferences. The
system, evaluated on the Food.com and MyFitnessPal datasets, outperformed other models
on various metrics, highlighting its effectiveness in providing tailored recommendations.

Kansaksiri et al. (2023) [75] introduced “Smart Cuisine”, which utilizes AI technologies,
including the Generative Pre-training Transformer (GPT) model, to offer personalized
recipes and nutritional advice, enhancing sustainable cooking practices. By processing
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food images and employing natural language processing, the system generates recipes and
provides nutritional guidance. Tests on the Recipe1M dataset showed higher accuracy in
predicting well-known recipes, demonstrating the system’s potential to revolutionize meal
preparation. Similarly, Safitri et al. (2023) [76] introduced CookPal, a GPT-3-based chatbot
aimed at promoting healthier eating habits by offering personalized recipe suggestions.
Operating on a desktop platform with a focus on data privacy, CookPal demonstrated high
accuracy in providing dietary advice (86%) and received positive feedback (4.5/5 in a scalar
size of 1 to 5) for its potential to facilitate healthier lifestyle choices.

In conclusion, the use of Recipe Recommendation Systems for promoting healthy
eating habits has gained significant attention, showing substantial potential for further
development. The literature review highlights a range of methods for tailoring recipe
suggestions based on individual preferences, dietary restrictions, and nutritional needs.
These approaches employ various techniques, including KNN and Euclidean distance.
Despite the diversity in inputs, from physiological data to dietary preferences and allergies,
there is a notable trend toward utilizing web-based platforms as intermediaries between
recommendation systems and users, as observed in Section 3.1.4.

3.1.3. Restaurant Recommendation Systems

The third category of recommendation systems derived from the PRISMA model is
Restaurant Recommendation Systems. With the abundance of data available on the internet,
and with the use of data-driven approaches, it is possible to develop recommendation
systems that can suggest restaurants or specific restaurant menu items based on users’
preferences and nutritional needs. By providing personalised recommendations, such
systems can help users make better decisions when ordering food while at the same time
promoting healthier eating habits.

Two innovative systems exemplify this trend: MenuDecoder, an AI-powered restau-
rant app proposed by Hasan et al. (2022) [77], and the “meals-plates exploration cycle”
recommendation system from Takahashi et al. (2023) [78]. MenuDecoder leverages AI
algorithms and a vast database of restaurant menus to offer personalized meal recommen-
dations based on user preferences and nutritional needs. A qualitative usability study
demonstrated high user satisfaction with the app’s design and helpfulness. On the other
hand, the recommendation system introduced by Takahashi et al. (2023) [78] enhances the
dining experience by aiding users in selecting suitable plates for their meals. It employs
machine learning for plate shape estimation and text classification, utilizing datasets from
recipe platforms and e-commerce websites to establish meal–plate relationships, catering
to user preferences and characteristics of both meals and plates.

In conclusion, the use of data-driven approaches in Restaurant Recommendation
Systems for personalised nutrition can have significant benefits. This is a promising area
for future research.

3.1.4. Summarization

In this section, we summarise key information for recommendation systems that were
presented previously in a single easy-to-use table (Table 1). For each recommendation
system, we provide: “Reference No.”, “Method/Model/Technology”, “Datasets”, “Inputs”,
and “Platform”. The first column presents the number of the reference that corresponds to
the paper or work presented in each row. The second column refers to the technologies used
to generate the personalisation (e.g., AI model, method, ontology, KGs, etc.). Additional
information is given in parentheses, indicating the use/role of the model. The third column
presents the datasets used, including novel datasets that were created as part of the scientific
work. The fourth column presents the input provided to the recommendation system, e.g.,
what information is fed to the AI model, ontology, etc. Here, additional information is also
given inside parentheses, explaining the integration of the various data inputs. Finally, the
fifth column refers to any means the scientists used to collect inputs or communicate with
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the users. Such platforms vary and range from paper questionnaires, where users fill the
information by hand, to mobile applications that employ a friendly user interface.

Table 1. Overview of the works presented in Section 3 (recommendation systems for personalised
nutrition), indicating method/model/technology (the “*” indicates that this work includes numerical
measurements regarding the algorithm’s efficacy and/or user acceptability. The reader can refer to
the work on Section 3 for additional information), datasets, inputs, and data acquisition platform
used. Additionally, the last row, named Notes, is referring to where a system uses clinical data (*)
and genetic data (**). For more information, the reader can refer to the corresponding work.

Reference No. Method/Model/Technology Datasets Input Platform Note

A. Nutrition Recommendation Systems

Haseena et al.
(2022) [36]

Cuckoo (optimization)
Fuzzy AHP (multi-criteria)

Fuzzy TOPSIS (decision
making) *

-
Physiological data

(use the data as values for the
comparison matrix)

Questionnaire *

Lakshmi et al.
(2023) [37]

Fuzzy AHP (multi-criteria)
Fuzzy TOPSIS (decision

making)
-

Physiological data, dietary data,
health data

(use the data as values for the
comparison matrix)

- *

Zhang et al.
(2022) [38] MaOO (optimization) * MyFitnessPal Dietary data, nutrition values - *

Salloum et al.
(2022) [39] TOP (optimization) * - Physiological data

(use a loss function) Questionnaire *

Rout et al.
(2023) [40]

KNN (clustering)
RF (classification) *

Kaggle (calorie
dataset)

Nutrition values,
physical activity

(clustering the data)

Web
application *

Kaur et al.
(2022) [41]

EfficientNet (B0-B7)
(classification)

VGG16 (classification)
VGG19 (classification)

ResNet50 (classification)
ResNet100 (classification) *

Food101

Physiological data, RBG images
(compute BMI and caloric needs
from physiological data and use
food images to calculate caloric

income and what
to recommend)

Web
application *

Aguilar et al.
(2022) [42]

Bayesian network
(probabilistic modelling) *

UECFOODPIX,
UNIMIB2016,

Food201
RGB images - *

Romero-
Tapiador et al.

(2023) [43]
CNN (classification) *

food images
(AI4Food-

NutritionDB)

Physiological data, preferences,
physical activity, food images

(construct the user profile from
all the above data and then

create food image datasets with
different eating behaviours)

Mobile
application *

Azzimani et al.
(2022) [44]

SVM (classification)
MFCN (segmentation) * Morocco FCT

Physiological data, health data,
RGBD images

(construct the user profile from
the physiological data and

health data and then include the
information of food image)

- *
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Table 1. Cont.

Reference No. Method/Model/Technology Datasets Input Platform Note

Shandilya et al.
(2022) [45]

Content-based
recommendation system

(recommendation system) *
CKD, USDA

Health data, preferences, rating
(item feature-based

classification, then extract
mandatory features from the
user’s profile and finally with
the extraction of the preferred

features they generate
recommendations)

- *

Xu et al. (2023)
[46]

KG (reasoning)
NLP (natural language) *

User Profiles, Food
Dataset

Sociodemographic, nutrition
and health, dietary preferences
(rule-based relation among the

KG schema)

- *

Hosen el. al.
(2023) [47]

PSO (optimization)
k-means (clustering)

SOM (clustering)
NLP (natural language) *

American food
chart

Dietary data, health data,
contextual info

(clustering the data)
- *

Larizza et al.
(2023) [48] - Use their own DB

Demographics, physiological
data, lifestyle

(construct child profile using
the above data)

Questionnaires *

Lodhi et al.
(2023) [49]

KG (reasoning)
Ontology (reasoning) * -

Health data, demographics
(construct user profile with the

data and then extract proper
nutritional recommendations

based on rule-based and
data-driven approaches)

Web
application *

Burgermaster
et al. (2023)

[50]
- -

Meal logs, health data,
food images

(these data are for constructing
the user profile)

Mobile
application *

Islam et al.
(2023) [51] TOPSIS (decision making) * -

EEG signals, food nutritional
(extract features from EEG

collection and survey data and
then recommend foods

and menus)

Questionnaires *

Yang et al.
(2022) [52] - -

Genetic data, physical data, diet
style, habits, medical data

(construct user profile with the
above data)

Mobile
application,

Questionnaire
**

Fu et al. (2023)
[53]

KG (reasoning)
Ontology (reasoning) *

FoodData Central
dataset (FDC),

FoodOn, Chinese
Food Ontology,

KEGG, MENDA,
MiKG, MeSH

Health data, food, gut
microbiota data

(the KG works with queries as
inputs and returns the

relationship among the above
three categories)

- *

Yang et al.
(2023) [54] - - Health data, physiological data

(construct the user profile)

Mobile
application,

Questionnaire
**

Yang et al.
(2022) [55]

LIMS (data management
processes)

Bioinformatic pipelines
Genetic Interpretation

System, CRM *

AutDB, DisGeNET,
OMIM

Physiological data
(construct the user profile)

Mobile
application,

Questionnaire
**
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Table 1. Cont.

Reference No. Method/Model/Technology Datasets Input Platform Note

Geng et.al.
(2023) [56]

Heuristic Optimization,
TRBCO *

Shaffer, Fonseca,
Kursawe, Poloni,

ZDT1-6,
Movielens-1M

Ratings
(use of rating to recommend

a meal)
- *

Sahal et al.
(2022) [57] DT -

Dietary data, physical activity,
contextual information

(they do not mention how they
integrate these data)

- *

Chivukula et al.
(2022) [58] Ontology * -

(The ontology works with
queries as inputs and returns

the relationship among the
tis classes)

-

Kaur et al.
(2023) [59] Ontology * Clinical data

Clinical data, weight,
gestational age

(SPARQL queries to the
ontology using the above data)

- *

Martinho et al.
(2023) [60] Ontology

FoodOn, Joint
Food Ontology

Workgroup
(JFOW)

Preferences, allergies, meal
intake, demographics

(Queries to the ontology using
the above data)

Mobile
application,

Web
application

*

Rostami et al.
(2024) [61]

Clustering (encoder and
decoder), deep neural

networks *
-

Preferences, health factors
of foods

(construction of a user-rating
matrix with the above data)

- *

Palacios et al.
(2023) [62] ADDIE * -

Food frequency
(construct user profile and feed

it to the model)

Questionnaire
Web

application
*

Wang et al.
(2023) [63]

BP Neural Network Model,
Gradient Boosted

Regression Trees (GBRT) *
-

Health data, physiological data,
physical activity,

contextual information
(input the above data into the

models and generate
personalized advice)

- *

Cunha et al.
(2023) [64] RNN, LSTM, GRU * FitBit fitness

tracker data

Food intake, physical activity,
physiological data

(input the above data into the
models to predict BMI, weight,

muscle mass, etc.)

- *

B. Recipe Recommendation Systems

Neha et al.
(2023) [65]

CNN, Naive Bayes, Fuzzy
Rule * -

Text data of ingredients
and recipes

(input of the above information
to the models)

- *

Wang et al.
(2022) [66] Integer programming -

Physiological data, health
data, preferences

(input of the above data to
the model)

Web
application *

Buzcu et al.
(2023) [67] Ontology OWL-based

ontology

Allergies, preferences, type
of cuisine

(queries to the ontology using
the above data)

Web
application *
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Table 1. Cont.

Reference No. Method/Model/Technology Datasets Input Platform Note

Shubhashree
et al. (2022)

[68]
KNN, Euclidean * -

Physiological data, dietary data,
preferences, restrictions

(construct user profile with the
above data and feed them to

the model)

Web
application *

Ribeiro et al.
(2022) [69] MaOO * -

Physiological data, food
type, allergies

(construct user profile using the
above data and feed them to

the model)

Mobile
application *

Wu et al. (2022)
[70] ATNet, PiNet Created their own

DB

Food images
(input the above data to the

model to classify them)

Web
application

Forouzandeh
et al. (2024)

[71]
NLA, SLA, GAT, GNN * Allrecipes

Rating, recipes
(combination of user profiles

and ratings of recipes to
produce healthy recipes

recommendations)

-

RahmathNisha
et al. (2023)

[72]

Decision trees, KNN, and
SVM *

Kaggle (food and
nutrition)

Physiological data, food image
(physiological data re used to

construct user profile and food
images to extract features and

then recommend a food)

Web
application *

Yera et al.
(2022) [73] KG *

Coolpod, Allrecipe,
Yammly, USDA,

Created their own
DB

(This model does not use
any inputs) -

Li et al. (2023)
[74] KG * Food.com, Food

KG

Health data, preference data
(two KGs are used for each data

to extract features and then
combine these outputs)

- *

Kansaksiri et al.
(2023) [75] Meta-AI, NLP * Recipe1M

Food images, OpenAI-powered
chat service

(input food images into the
model to extract ingredients)

-

Safitri et al.
(2023) [76] GPT-3, NLP * Created their own

DB
Contextual information

(user texts with the chat-bot)
Desktop

application

C. Restaurant Recommendation Systems

Hasan et al.
(2022) [77] AI * Dataset of

restaurant menus

Preferences, menu image
(menu item extraction from
menu image and combined

with preferences to recommend
a menu)

Web
application *

Takahashi et al.
(2023) [78] Flow graph, CRF Cookpad

Preferences
(This model does not take any

data as input. It is a flow graph
which is being trained by the

user and leads the user to
preferred recommendations)

-
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3.2. Data Collection Technologies

A subject that emerges from the literature examined above is the usage of various
sensors, devices, technologies, or processes to gather users’ nutrition/health related data.
Data acquisition is typically carried out via two distinct processes: (i) user questionnaires
or (ii) automated data gathering utilising a multitude of diverse devices ranging from
communication devices to wearable sensors and from cameras to medical devices.

Sonkusale et al. (2022) [79] listed an extensive array of sensors specifically designed
for measuring and extracting vital body information. These sensors, readily available in the
market, play a pivotal role in supporting PN applications. Furthermore, a more in-depth
technical analysis is presented in the review paper by Ates et al. (2022) [80], offering a
comprehensive and more technical examination of various wearable sensor technologies.
This review emphasizes the end-to-end process that transforms raw sensor data into
meaningful insights that can inform PN applications. The synthesis of insights from these
papers underscores two key points: the abundance of diverse devices and sensors available
for PN and the evolving technological landscape that underpins their functionality.

This section presents the data collection technologies that are integral to the field of PN,
drawing insights from the literature. It is structured into four subsections, each delineating
distinct categories of data collection technologies based on their unique nature, scope, and
roles in PN research, and a fifth subsection that summarizes this information.

3.2.1. Wearable Sensing Devices

An avenue for collecting data in the realm of PN involves the utilization of wearable
sensors. When discussing wearable devices, we typically refer to items like smart watches
and activity trackers, but there are also other devices, such as smart glasses and smart head-
phones, that can monitor metrics like heard rate, blood pressure, and sleep performance
and feed this data to recommendation systems.

The CarpeDiem app, as discussed by Migliorelli et al. (2023) [81], integrates data from
wearable devices and user questionnaires to analyse physical activity, sleep patterns, and
nutritional habits, offering personalized recommendations to promote healthier lifestyles.
A pilot study assessed its effectiveness in driving long-term behavioural changes, empha-
sizing the utility of combining objective and subjective health data. Meanwhile, Wang
et al. (2022) [82] presented NutriTrek, a wearable electrochemical biosensor engineered
to continuously analyse sweat for various metabolites and nutrients, including essential
amino acids and vitamins. Its wireless communication facilitates real-time monitoring of
nutritional needs, showcasing the potential of wearable sensors for developing effective
personalized nutrition plans through non-invasive and convenient data collection.

Khan et al. (2022) [83] proposed iHearken, a headphone-like wearable sensor system,
employing ML techniques to automatically recognize food intake types in real-life settings.
Through four phases, including data acquisition and classification using Bidirectional long
short-term memory (Bi-LSTM) models, iHearken achieves high accuracy (97.422%), preci-
sion (96.808%), recall (98%), and F-score (97.512%), demonstrating superior performance
in food recognition compared to other models. This research underscores the potential of
wearable sensors and ML for dietary monitoring. Similarly, Xiao-Yong et al. (2023) [84]
introduced a smartwatch-based health management system utilizing physiological data
transmitted via 5G and NarrowBand-Internet of Things (NB-IoT) technologies. The system
offers continuous monitoring and feedback for medical diagnosis and disease prediction,
acknowledging challenges like power consumption and transmission range that require
attention for improved effectiveness.

In conclusion, wearable sensors are an excellent way of gathering data from users and
feeding them to recommendation systems. With wearable devices, a recommendation sys-
tem can be frequently updated with users’ physiological data and generate more accurate
and on-site recommendations.
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3.2.2. Cameras

Currently, cameras can be found almost everywhere and in every device, from smart-
phones with multiple cameras with great resolution to embedded cameras on wearable
devices like activity trackers. The work by Azzimani et al. (2022) [44] involves an innova-
tive technique that employs advanced image processing methods to accurately calculate
the nutrient content of items depicted in RGBD images that were captured before and after
a meal. Similarly, Aguilar et al. (2022) [42] attempted to enhance the accuracy of existing
image recognition networks using Bayesian networks. Given an image of one or multiple
food plates, the enhanced model can better recognise the foods on the plate. Along the same
lines, in the work presented by Wu et al. (2022) [70], images are fed to the AI algorithm for
food classification, ingredient recognition, and nutrition analysis to produce a nutrition
report for the user. The evaluation and accuracy of these tree works was further discussed
in Section 3.1.1.

All in all, cameras with the synergy of AI and ML algorithms can produce significant
information for the recommendation systems. From calorie estimation to volume estimation
and from food recognition to ingredient recognition, the power of RGB and RGBD images
plays a crucial role in the field of PN, with much more to give in the future.

3.2.3. Smartphones and Applications

Smartphones play a multifaceted role in the realm of PN. They are harnessed for di-
verse purposes, such as capitalizing on their high-quality cameras to capture high-resolution
images [42,44,70]. Additionally, the development of mobile applications dedicated to PN
has emerged as another avenue [52,54,55,69,85]. An example is the work of Zamanillo-
Campos et al. (2023) [86], which discusses the development and evaluation of DiabeText, a
personalized mHealth intervention aimed at supporting medication adherence and lifestyle
change behaviour in patients with type 2 diabetes in Spain. The testing of the app showed
a high level of personalization and patient-centredness. These applications, equipped with
user-friendly interfaces, facilitate the input of personalised information and display results
from recommendation systems. Furthermore, smartphones leverage wireless connection
technologies like Bluetooth to link with various wearable devices. Notably, Martínez-
Rodríguez et al. (2022) [87] underscored the efficacy of combining wearable sensors with
mobile applications, showcasing superior outcomes compared to methods that do not
integrate smartphone applications.

Additionally, gamification emerges as a significant factor in driving user engagement
with PN mobile applications, as emphasized by Al-Rayes et al. (2022) [88]. Similarly, Oc
et al. (2022) [89] explored motivational technology characteristics through the U-Commerce
lens, introducing the gaming, instructing, sharing, and teaching GIST model based on user
preferences for gaming, instructing, sharing, and teaching features. This model, built on
four principles, aims to cultivate autonomous motivation among users, facilitating more
effective and sustainable engagement with PN applications.

In conclusion, smartphones and their synergy with mobile applications and wearable
sensors can provide not only a user-friendly interface for users to interact with a PN
application, but also a means by which valuable data and information can be collected by
the recommendation systems.

3.2.4. Other Sensing Devices

In addition to wearable devices, a diverse array of non-wearable sensing devices holds
substantial promise for personalised nutrition. Such devices range from simple smart scales
to smart forks and even EEG signal-capturing devices or DNA kits. As was mentioned
previously, Islam et al. (2023) [51] retrieved brain data using EEG signals as inputs for their
recommendation system, while Yang et al. (2023) [54] used DNA kits to collect genetic
information from the users.

Likewise, Wilson-Barnes et al. (2022) [19] employed a volatile organic compound
(VOC) sensor to analyse the breath of research participants in two population groups
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at nutritional risk: (i) adults with poor-quality diets (PQD, fewer than three portions of
fruit and vegetables per day) and (ii) adults with iron-deficiency anaemia. The analysis
results were subsequently used to investigate correlations of specific compounds with the
two groups.

In summary, pivotal health and nutrition-related information can be gleaned from
advanced non-wearable sensing devices; however, the process of obtaining, analysing, and
applying the data is often more intricate compared to wearable sensors. Beyond the sheer
volume of these devices, users may encounter challenges, such as the need to visit hospitals
or specialized facilities. Moreover, the complexity of these devices can render them difficult
to use and potentially expensive.

3.2.5. Summarization

In the table below, we provide an overview of the various data collection technologies
that were presented in this section (Table 2). For each technology, we identify the data-
capturing sensor or device used; its data output, which is used as input to the method or
model employed; and finally, the scope of the method/model used in the respective work.

Table 2. List of the data collection technologies presented in Section 4, indicating sen-
sors/devices used, method/model input (which is also the output of the sensor/device), and
method/model scope.

Reference No. Sensor/Device Used Method/Model Input (Sensor
Output Data) Method/Model Scope

Wilson-Barnes et al. (2022) [19] VOC Human breath Nutrient estimation

Aguilar et al. (2022) [42] Camera RGB of a plate Food recognition

Azzimani et al. (2022) [44] Camera RGBD of a meal Meal personalisation

Islam et al. (2023) [51] EEG EEG signals Affects of different meals

Yang et al. (2022) [52] Mobile

Genetic testing, physical
examination, diet style, habits
and customs, medical history,

exercise data

Tailored nutrition solution

Yang et al. (2023) [54] Mobile, DNA kit
Lifestyle questionnaire,

physical examination results,
DNA data

Evaluating users’ immune
status, nutritional

deficiency risk

Yang et al. (2022) [55] Mobile, DNA kit
Analysing genetic data,
lifestyle data, physical

examination data

Genetic interpretation report,
personalized nutrition report,
customized nutrition packs

Cunha et al. (2024) [64] Food scale, body scale,
smartwatches

Food intake attributes,
physical activity metrics, body

parameters

BMI prediction, personalised
feedback, goal monitoring

Ribeiro et al. (2022) [69] Mobile Food preferences, restrictions,
nutritional needs Meal recommendation system

Wu et al. (2022) [70] Camera RGB of a meal Food classification

Migliorelli et al. (2023) [81] Activity tracker
Step counter, physical activity,

pulse, sleep hours and
sleeping efficiency

Physical activities,
cardiovascular activities, sleep

patterns, nutritional habits

Wang et al. (2022) [82] NutriTrek Age, BMI Health monitoring, precision
nutrition

Khan et al. (2022) [83] Headphone-like Chewing sounds Food intake type

Xiao-Yong et al. (2023) [84] Smartwatches, mobile Pulse, heart rate, blood
oxygen Health management
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Table 2. Cont.

Reference No. Sensor/Device Used Method/Model Input (Sensor
Output Data) Method/Model Scope

Zamanillo-Campos et al.
(2023) [86] Mobile Patient-elicited data Tailored brief text

Martínez-Rodríguez et al.
(2022) [87] Mobile, activity tracker

Blood pressure, body weight,
water intake, fruits intake,

vegetables intake,
physical activity

Personalised reminders,
behavioural tips, educational

material, progress tracking

Oc et al. (2022) [89] Smartwatches, smart
wristbands, mobile Preferences Gamification

4. Discussion

In this section, we discuss and summarise the findings from the preceding literature
review, shedding light on the research challenges that emerge. Upon examining all pre-
sented works, certain features have been identified as not only pivotal to each individual
study, but also shared across multiple works. A synthesis of such common features was
performed, and the result was presented in tabular format to show how each work/method
incorporated them. Specifically, we focused on the methods/models/technologies pre-
sented in the various works, and for each, we identified the specific datasets, input types,
and presentation platforms that were used. The surveyed works employed a diverse
array of methods, and even when multiple works employed the same method, they often
leveraged different technologies. Across the presented works, various approaches were
adopted, including image recognition models (Azzimani et al. (2022) [44]), heuristic op-
timizations (Heuristic optimization refers to a problem-solving approach that employs
practical, experience-based techniques to find good enough solutions for complex opti-
mization problems, especially when traditional methods are computationally infeasible;
“https://en.wikipedia.org/wiki/Heuristic_(computer_science) (25 August 2024)”) (Geng
et al. (2023) [56]), Bayesian networks (Bayesian networks are probabilistic graphical mod-
els that represent a set of variables and their conditional dependencies using directed
acyclic graphs, enabling efficient reasoning and inference under uncertainty; “https://en.
wikipedia.org/wiki/Bayesian_network (25 August 2024)”) (Aguilar et al. (2022) [42]), DT
(Digital Twin is a virtual representation of a physical object, system, or process that is used
to simulate, analyse, and optimize its real-world counterpart through real-time data and
advanced algorithms; “https://en.wikipedia.org/wiki/Digital_twin (25 August 2024)”)
methodologies (Sahal et al. (2022) [57]), deep convolutional neural networks (Deep convolu-
tional neural networks are a type of artificial neural network designed to process and anal-
yse grid-like data structures, particularly images, by using multiple layers of convolutional
filters to learn spatial hierarchies of features automatically and adaptively from the input
data; “https://en.wikipedia.org/wiki/Convolutional_neural_network (25 August 2024)”)
(Kaur et al. (2022) [41]), ontologies (Formal representations of a set of concepts within a do-
main and the relationships between those concepts, used to model domain knowledge in a
structured and interpretable way for purposes such as information sharing, integration, and
reasoning; “https://en.wikipedia.org/wiki/Ontology_(information_science) (25 August
2024)”) (Buzcu et al. (2022) [67]), and more. It is evident that the reviewed works demon-
strate significant diversity by employing multiple and distinct approaches, highlighting
the breadth of methodologies within the field.

Conversely, when it comes to input types, commonalities emerge among the studies’
recommendation systems. For instance, users’ physiological data represent a recurring
input type [36,41,55], while food images play a central role in [41,42,44,70] and more. Specif-
ically, input types have been categorised into four main groups: user profile data (including
personal information, physiological data, genetic data, physical activity, habits, etc.), user
health data (including allergies, diseases, medical history etc.), user preferences/restrictions

https://en.wikipedia.org/wiki/Heuristic_(computer_science
https://en.wikipedia.org/wiki/Bayesian_network
https://en.wikipedia.org/wiki/Bayesian_network
https://en.wikipedia.org/wiki/Digital_twin
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Ontology_(information_science
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(including dietary preferences/restrictions, food ratings, dietary patterns, preferred cui-
sine, cultural aspects etc.), and food images (e.g., RGB or RGBD images). The radar chart
depicted in Figure 3a visually represents how frequently each input type is used in the
reviewed works.
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One significant finding related to the datasets used by the reviewed works is that, in
most instances, the researchers employed pre-existing, well-established datasets. However,
there are cases where bespoke datasets tailored to the specific research goals are used, as
evidenced in Wu et al. (2022) [70]. A second noteworthy observation is the considerable
diversity across the used datasets. For instance, [44,45,73] utilised national databases
containing nutrition values for various foods, while in Zhang et al. (2022) [38], physiological
data were extracted from the MyFitnessPal app. In contrast, Geng et al. (2023) [56]
employed ten heuristic optimization benchmark datasets, and Yang et al. (2022) [55]
relied on a database for autism as well as a database detailing gene–disease association.
Additionally, [41,42,74] incorporated databases of food images, while Buzcu et al. (2023) [67]
adopted a Web Ontology Language (OWL), showcasing the rich spectrum of data sources
and methodologies employed by researchers in this field.

In terms of presentation platforms, the reviewed works exhibit commonalities, as
nearly half of the works in Nutrition Recommendation Systems and almost all the works in
Recipe Recommendation Systems used a platform or a method for users to interact with
the recommendation system and for the recommendation system to collect information and
data from the users. For instance, [36,52,54,55] utilised questionnaires for user interaction,
while [41,66,68] opted for web-based applications. In general, presentation platforms have
been categorised into four main groups: user questionnaires, mobile applications, web-
based applications, and desktop-based applications. The radar chart depicted in Figure 3b
visually represents the usage frequency of the various presentation platform types among
the works, highlighting the prevalent approaches adopted by researchers for facilitating
user engagement and data collection in recommendation systems.

The ultimate role of personalized Nutrition Recommendation Systems is to assist
individuals in changing/sustaining their dietary habits to improve their health outcomes,
such as balancing BMI, achieving weight loss, and preventing disease. To fully assess the ef-
fectiveness of these systems, long-term studies involving human participants are necessary.
While our focus in this paper is on the technical evaluation and validation of these systems,
as outlined in the introduction, we acknowledge that there is one study that has conducted
such an experiment. Yang et al. (2023) [54] demonstrated that personalized nutrition and
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nutritional supplements significantly improved the immune system of elderly participants
by tailoring nutrient intake based on individual genetic profiles, health indicators, and
lifestyle factors. This personalized approach led to a marked improvement in immune mark-
ers, such as a 30% increase in T-cell activity and a 25% reduction in inflammation-related
markers, enhancing overall immune function and reducing susceptibility to infections and
autoimmune conditions.

Drawing upon the differences and similarities between nutrition RSs and recipe RSs,
it is not clear whether adding recipe recommendation over nutritional recommendation
has additive value. However, one benefit of recipe RSs over nutritional ones is stated in
Ribeiro et al. [69], who stated that the creation of multiple meal recommendations extended
control over users’ diets, unlike single-recommender systems.

Finally, several reviewed works have taken the additional step of integrating their
recommendation systems into practical applications, such as web or mobile platforms,
which are currently available and can be used online. For example, Safitri et al. (2023) [76]
presented an application named CookPal, which is a web site where a user can either
upload an image of one or more products or write those products and the algorithm will
produce a recipe with these products. Additionally, Hasan et al. (2022) [77] provided a web
site where users can find useful articles about foods, recipes, restaurants, and more.

Research Challenges in Recommendation Systems for Personalised Nutrition

The field of PN revolves around customising dietary recommendations and inter-
ventions for individuals, considering their distinct characteristics, including their profile,
genetic information, metabolism, microbiome composition, lifestyle, preferences, and
health status. For example, Andres et al. (2023) [90] focused on data engineering issues
like data collection, cleaning, integration, and processing, alongside the design and imple-
mentation of efficient data pipelines and storage systems, while Sedrakyan et al. (2023) [91]
discussed the importance of integrating sustainable food consumption into recommenda-
tion systems, the limitations of existing food recommendation systems, and privacy, among
other challenges.

Despite the considerable potential of existing PN approaches to enhance health out-
comes, a careful examination and analysis of various reviewed works reveal several research
challenges that demand attention. This chapter enumerates the research challenges derived
from a meticulous review of the literature.

Data Collection and Integration. PN often requires extensive collection of multimodal
data that can range from personal user profiles to microbiome and genetic data, and from
physical activity data to clinical data. The majority of the above works used more than
one type of data as input to obtain a more accurate result, like [38,43,52]; therefore, more
diverse datasets are needed.

• Research challenge: Integration of diverse datasets and development of standardised protocols
for multimodal data collection and analysis

Several data collection devices or methods are either costly or time-consuming (or
both) for the user [19,51,54,55].

• Research challenge: Friendlier and more easily accessible means (devices, methods, etc.) for
data collection.

Precision and Accuracy. Achieving precise and accurate recommendations for indi-
viduals is challenging due to the complex interplay of multiple factors. Combining multiple
technologies and data, like [36,41,55,63], can diverse the accuracy of a system.

• Research challenge: Understanding the interactions between genes, diet, lifestyle, the micro-
biome, and more via novel sophisticated analytical methods and respective computational tools.

Increasing data diversity leads to more accurate results [37,38,43,51,79,80].

• Research challenge: Improvement of existing or development of novel technologies (e.g., smart
devices) for gathering of additional data.
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Genetic Variation and Gene–Diet Interactions. Genetic variation plays a crucial role
in individual responses to dietary factors. People respond differently to the same dietary
interventions due to variations in genetics, metabolism, and other factors. Only three stud-
ies [52,54,55] include genetic data, indicating the need to address this research challenge.

• Research challenge: Developing personalised recommendation systems that account for
genetic variability.

• Research challenge: Identifying relevant genetic variants and understanding how they interact
with specific nutrients or dietary patterns via large-scale studies and advanced
statistical techniques.

Long-Term Effects. Studying the long-term effects of PN interventions is essential to
understand their impact on health outcomes. Many studies have conducted surveys that
included humans, like [66,74,78], for a couple of months, but not for more.

• Research challenge: Conduct long-term studies with large sample sizes while overcoming any
respective logistical challenges and financial constraints.

Long-Term Results. To evaluate recommendation systems more comprehensively,
there is a need for more long-term studies involving human participants, rather than
focusing solely on technical aspects.

• Research challenge: Conduct long-term studies with large numbers of real users using diet rec-
ommendation systems, carefully monitoring their responses throughout the process (nutrition
behavioural changes, real health changes/outcomes achieved, etc.).

Behaviour Change. PN recommendations often require individuals to make signif-
icant changes to their dietary habits and lifestyle. Studies like [48,70,81,88] have tried to
leverage the challenge to motivate a user to keep using a diet, but more effort is needed in
this direction.

• Research challenge: Understand how to effectively motivate and support individuals in making
sustainable behaviour changes.

Ethical and Privacy Considerations. PN almost inevitably involves the collection
and use of sensitive personal data. The study of Safitri et al. (2023) [76] is an example of
developing a system focusing on users’ data privacy.

• Research challenge: Facilitate privacy protection and address ethical concerns related to data
ownership, consent, and potential discrimination.

In addition to the challenges identified in the reviewed papers, below, we further
highlight the research challenges put forth by Food2030 [92], aiming to offer a more com-
prehensive perspective on this subject. These challenges are not met (with one exception)
in the above studies, and therefore, it is urgent to address them in featured works. While
the overarching scope of Food2030 is “to achieve a resilient food system that is fit for the
future”, specific requirements put forth include the need to also deliver co-benefits for
peoples’ health, the world’s climate, the planet, and communities. Hence, the imperative for
the coexistence of PN and sustainability remains an ongoing consideration and represents
a crucial aspect that could be seamlessly integrated into recommendation systems. The
challenges that Food2030 addresses can be summarized as follows.

Carbon footprint. One of the major challenges faced by modern society is the carbon
footprint associated with food production and consumption.

• Research challenge: Utilisation of technologies such as blockchain to trace the origin of
food/products or geolocation systems to track their journey from farm to fork, with the aim of
contributing to reductions in the carbon footprint.

• Research challenge: Development of technological solutions to facilitate precise calcu-
lations, with the aim of contributing to reductions in the carbon footprint.

Waste. Food waste is a pressing problem in contemporary societies, particularly in
more developed countries with high populations and demand.
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• Research challenge: Development of technological solutions for improved accuracy of estima-
tions regarding required quantities of food/products at each stage of the supply chain.

Prices. Accessibility to affordable food/products remain a challenge in several impov-
erished nations worldwide (Wang et al. (2022) [66]).

• Research challenge: Development of technological solutions for the analysis of pricing dispari-
ties, ultimately working towards greater affordability and accessibility.

Sociocultural aspects. Reshaping societal behaviours can lead towards a more envi-
ronmentally conscious and sustainable way of living.

• Research challenge: Development of solutions/methods for incorporating technology in educa-
tion and societal restructuring towards a greener and more sustainable society.

In summary, the research challenges for data-driven innovation in the field of PN
span across diverse domains. A critical focus is on the data sphere, demanding large-scale,
precise, and readily accessible datasets. Ethical and privacy concerns emerge prominently,
particularly in the utilization of personal user data. The inherent variability among in-
dividuals poses a significant challenge for recommendation systems in PN, striving to
tailor recommendations to each user effectively. Developing user-friendly applications and
platforms is another substantial hurdle. Furthermore, the long-term effects of employing
recommendation systems as well as their seamless integration with Food2030 goals pose
complex challenges. Achieving harmony with existing technologies and exploring new
ones becomes pivotal, especially concerning sustainability, food waste, and other challenges
outlined in Food2030. Consequently, the multidimensional nature of challenges in this
research field necessitates comprehensive consideration across various facets.

5. Conclusions

This review paper describes a review of data-driven innovative technologies in the
realm of PN, offering a comprehensive and holistic overview of the various technologies
and their applications in this research field. Adhering to the PRISMA model, the reviewed
works cover the period from 2021 to date, emphasising the synergy between computer
science and PN.

The findings indicate that the predominant approach to amalgamating these two fields
involves the use of recommendation systems. These systems are further categorised into
Nutrition, Recipe, and Restaurant Recommendation Systems. The diversity in technologies
and methods employed by these recommendation systems is noteworthy. Common across
nearly all recommendation systems are the inputs utilized, including user data and food
images. Another shared feature is the mediums employed to gather inputs, typically
questionnaires, web-based apps, mobile apps, and desktop-based apps.

A dedicated chapter delves into the technologies employed for data collection, high-
lighting the crucial roles of wearable and non-wearable sensors, cameras, smartphones, and
mobile applications. The development of user-friendly interfaces for these recommendation
systems, coupled with the integration of wireless connected devices for data provision,
holds the potential to guide individuals towards healthier lifestyles using mobile apps for
personalized nutrition.

Finally, this literature review identified several research challenges. The paper lists the
most significant challenges within the realms of nutrition, computer science technologies,
and sustainability, offering a comprehensive perspective on the research field.
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