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Abstract
Background Ultra-processed food (UPF) intake is positively associated with multiple adverse health outcomes. 
However, the underlying biological mechanisms remain unclear. Serum metabolites may elucidate these 
mechanisms. We investigated serum metabolites correlated with UPF and un/minimally processed food (UNPF) intake 
and evaluated their association with selected biochemical markers.

Methods Cross-sectional study within the UK biobank, including a total of 72,817 participants with 24-hour recall 
dietary data and 134 nuclear magnetic resonance metabolites. UPF and UNPF intakes were evaluated using the NOVA 
classification, and related metabolites were identified using elastic net penalized regression. A UPF metabolomic 
signature was computed as a weighted sum of UPF-related metabolites, using elastic net coefficients as weights. 
Associations between UPF and UNPF-related metabolites, and serum C-reactive protein (CRP), insulin-like growth 
factor-1(IGF-1), sex hormone-binding globulin (SHBG), and testosterone were examined using multiple quantile 
regression.

Results Elastic net model identified 17 and 15 metabolites uniquely related to UPF and UNPF intake, respectively. 
Acetoacetate, acetone, high-density lipoprotein (HDL) diameter, docosahexaenoic acid, linoleic acid, ω-3 fatty acids 
(FA), total lipids in large HDL cholesterol, and valine levels were decreased, but free cholesterol in extremely small 
very low-density lipoproteins (LDL), glutamine, glycine, glycoprotein acetyls, lactate, saturated FA, sphingomyelins, 
triglycerides in large LDL, and triglycerides in medium HDL levels were increased with high UPF intake. Opposite 
relationships were observed for UNPF intake. Heterogeneous associations were observed between UPF-related 
metabolites and CRP, IGF-1, SHBG, and testosterone levels. A UPF metabolomic signature was positively associated 
with CRP (regression coefficient per standard deviation, 1.45, 95% confidence interval, 1.385, 1.515) and negatively 
associated with IGF-1 (-3.16, -4.493, -1.827) and SHBG (-13.878, -15.291, -12.465).

Conclusion A UPF metabolomic profile, including VLDL free cholesterol, saturated FA, triglycerides, glutamine, 
glycine, and glycoprotein acetyl was associated with inflammatory, insulin signalling, and reproductive biomarkers. 
This metabolomic profile should be explored as a potential mediators of UPF-disease associations, and as an objective 
marker of UPF intake.
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Introduction
Recently, the influence of industrial food processing on 
modern dietary patterns has gained tremendous rec-
ognition from public health authorities [1] beyond the 
traditional nutrient-based understanding of food [1–3]. 
Ultra-processing techniques are employed to formulate 
UPF. These are products with the highest level of food 
processing, formulated by recombining natural food 
extracts with industrial-grade sweeteners, emulsifiers, 
colors, and flavors [3].

These foods are extremely tasty, appealing, palatable, 
and shelf-stable products such as carbonated and sug-
ared drinks, chocolate and energy bars, biscuits, confec-
tionery, instant noodles, powdered or “fortified” meals, 
and reconstituted meat and substitutes, among others 
[3]. Therefore, UPF are becoming increasingly popular in 
modern consumer diets [4].

Ultra-processed foods are energy-dense, low in fiber 
and micronutrients, are prone to overconsumption, and 
tend to displace healthy dietary items from the diet [5]. 
Meta-analyses of epidemiological evidence suggest that 
the consumption of UPF may be linked to increased risks 
of obesity, cardiometabolic outcomes, mental, respira-
tory, and gastrointestinal health, cancer, and mortality 
[6]. Several studies have reported associations between 
UPF intake and intermediate disease markers, mostly 
focusing on inflammatory biomarkers and CVD-related 
proteins [7–10].

However, the biological mechanisms underlying these 
associations remain controversial. Available hypothe-
sized mechanisms include the suboptimal nutrient profile 
of UPF, alteration of insulin signaling by UPF additives, 
promotion of gut microbiome dysbiosis, overeating, and 
increased exposure to neoformed compounds, such as 
furans, industrial trans-FA, and chemicals in packaging 
materials, including phthalates, bisphenols, mineral oils, 
and microplastics [11]. Most theorized mechanisms are 
extrapolations of the potential effects of nutrient and 
non-nutrient contents in the UPF and have been criti-
cized for their lack of clarity, specificity, and consistency 
[12].

Metabolites may elucidate biological mechanisms that 
underly the relationship between UPF intake and health 
outcomes [13]. However, investigations into metabolo-
mic correlates of UPF intake are sparse [14–16]. Only 
two studies have explored the utility of UPF-related bio-
markers in predicting clinical endpoints, namely, obesity 
[16] and chronic kidney disease [14], and only one study 
examined the correlation between metabolites and vary-
ing degrees of food processing [15].

Biochemical markers including C-reactive protein 
(CRP), insulin-like growth factor-1 (IGF-1), sex hor-
mone-binding globulin (SHBG), and testosterone repre-
sent pathways related to systemic inflammation, insulin 
bioavailability and signaling, hormonal function, and 
cancer development [17–19]. Experimental studies sug-
gested that these pathways may explain adverse health 
effects associated with UPF consumption [11]. To pro-
vide preliminary mechanistic links in a human popu-
lation, we identified serum metabolites related to the 
degree of food processing and examined the association 
of UPF intake-related metabolites with inflammatory, 
insulin signaling, and hormonal function biomarkers in 
UK biobank participants.

Materials and methods
Study design and participants
Participants were sourced from the UK Biobank, a large 
prospective cohort study conducted at 22 geographically 
and socioeconomically diverse recruitment sites in the 
UK. This open resource was established to investigate the 
determinants of disease in middle-aged and older adult 
participants. At least half a million participants aged 
40–69 years were recruited at baseline between 2006 and 
2010. The details of this study have been described previ-
ously [20].

In this analysis, 210,948 of 502,357 participants com-
pleted at least one dietary assessment questionnaire at 
baseline, first, second, third, or fourth repeat assess-
ments between 2009–2010, 2011, and 2012, respectively. 
Participants who were only involved in the first, second, 
and third cycles were excluded because they lacked cor-
responding metabolomic data assessed in the same 
period  (n = 60,421). Out of 150,527 remaining partici-
pants, 73,373 were excluded because they lacked metabo-
lite measurements at baseline  (2006–2010) and repeat 
assessments in 2012, leaving 77,149 participants with 
baseline or follow-up diet and metabolomic data. Partici-
pants with extreme metabolite values, defined as outside 
four interquartile ranges from the median, were further 
excluded, resulting in a final analytical sample of 72,817 
participants (Fig. 1).

The UK Biobank Cohort Study was approved by the 
Northwest Multi-Centre Research Ethics Commit-
tee (21/NW/0157). All the participants provided writ-
ten informed consent before participating in the study. 
The current study was approved by the Institutional 
Review Board of Kangwon National University (KWNU-
IRB-2023-03-003), and data access was approved under 
Research ID 102,492.

Keywords Ultra-processed food, Metabolites, C-reactive protein, Sex hormone-binding globulin, Insulin-like growth 
factor-1, UK Biobank
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Evaluation of dietary intake and classification of food 
processing
The Oxford Web-based 24-hour Dietary Questionnaire 
(WebQ) was used to assess the intake of 238 food and 
beverage items. Baseline assessments were conducted at 
the recruitment sites between April 2009 and Septem-
ber 2010 via a participant-administered touch screen 
questionnaire administered by participants, and repeat 

assessments were conducted over four cycles. During 
repeat assessments, participants were sent email invita-
tions to complete online questionnaires between Feb-
ruary and April 2011 (cycle 1), June to September 2011 
(cycle 2), October to December 2011 (cycle 3), and April 
to June 2012 (cycle 4) [21]. Participants selected the foods 
consumed in the previous 24  h and were prompted to 
select the portion sizes consumed. Energy and nutrient 

Fig. 1 Selection of study participants. 1 Excluded because metabolites were not measured in 2011, 2 Metabolite values beyond 4 interquartile ranges 
from the median value
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intake were estimated by linking portion sizes to the UK 
Nutrient database [22]. The performance of the online 
WebQ has been shown to be comparable to that of the 
interviewer administered WebQ [23], and both question-
naires have been validated using biomarkers [24].

Using the NOVA system, we categorized each food 
item on the WebQ based on the degree of processing 
[5]. The NOVA system classifies foods as unprocessed or 
minimally processed (UNPF), culinary ingredients, pro-
cessed foods, or UPF. The consumed weight of each food 
item was calculated by multiplying the reported portion 
sizes by the standard weights published by Perez-Cor-
nago et al. [22]. These weights were summed to deter-
mine total UPF and UNPF consumption (g/d). The intake 
of each NOVA group was expressed as a proportion of 
the total dietary intake (% of food weight) to account 
for non-nutrient components. The classification of food 
items by the NOVA system is shown in Supplemental 
Table 1.

Assessment of biochemical markers
Trained UK Biobank phlebotomists collected about 45 
mL of blood into sample collection tubes (ethylenedi-
aminetetraacetic acid, plasma or serum separator tubes) 
during recruitment (2006–2010). Participants were not 
required to fast since the UK biobank intended to col-
lect samples that are applicable to various conditions 
[25]. Collected blood samples were transported to the 
UK Biobank central processing and archiving facility in 
Stockport at 4 °C. Samples were automatically aliquoted 
to create subsamples which were stored at -80  °C or in 
liquid Nitrogen at separate archive sites. For processing, 
small aliquots of 1.4 mL were automatically created and 
assayed in chronological order of collection within two 
days. Circulating IGF-1 was quantified using immunoas-
says with immune analysers (DiaSorin Liaison XL [Dia-
sorin S.p.A]. Sex hormones and CRP were quantified by 
chemiluminescent assays using Beckman Coulter DXI 
800 (Beckman Coulter UK, Ltd) and immunoturbimet-
ric methods using Beckman Coulter AU 5800 (Beckman 
Coulter UK, Ltd) respectively [26].

Metabolomic profiling
A large-scale, targeted serum nuclear magnetic reso-
nance spectroscopy-based metabolomics platform 
developed by Nightingale Health Plc. was used to quan-
tify circulating metabolites. This platform enables the 
simultaneous and granular quantification of lipoprotein 
subclasses, circulating fatty acids (FA), amino acids, tri-
glycerides, creatinine, glycolysis-related metabolites, and 
ketone bodies [27]. The detailed assessment methods 
have been described elsewhere [27, 28] and are briefly 
illustrated in the Supplementary Methods. Of the 249 

assayed metabolites, we focused on 134 metabolites, 
excluding ratios (81) and sums (34).

Assessment of covariate information
Sociodemographic characteristics, lifestyle, and fam-
ily history of disease were assessed at baseline using a 
self-administered touchscreen questionnaire.  Pre-exist-
ing medical conditions and intake of medications were 
assessed using a verbal interview by a UK biobank nurse 
[20]. Physical activity was assessed using a validated short 
version of the International Physical Activity Question-
naire and expressed as MET-minutes/week [29]. Physi-
cal measurements were performed by trained staff at the 
UK Biobank. After removing shoes and heavy clothing, 
weight was measured to the nearest 0.1 kg using a body 
composition analyzer (Tanita BC-418MA), and height 
was measured using a height scale (Seca 202). Body mass 
index (BMI) was calculated as the ratio of weight (kg) to 
height (m2) [29].

Categorical covariates were defined as follows: sex 
(men, women), ethnicity (White, African/Caribbean, 
Asian/Chinese, Mixed/others), index of multiple depriva-
tion (quintiles), employment (whether actively employed 
or not), highest educational level attained (none, voca-
tional training, ordinary [O’] level/middle school, 
advanced [A’] level/high school, and college and above), 
and annual income (0–18000, 18000–30,999, 31,000–
51,999, 52,000–100,000, and 100,000 £).

Lifestyle factors were defined as follows: alcohol con-
sumption, smoking (never, current, or past), and sleep 
duration (hours/day). Pre-existing diabetes, cancer, and 
cardiovascular disease  (CVD) were defined as yes/no 
based on self-reported diagnostic reports verified by UK 
biobank nurses, and documented use of medication for 
the reported conditions.

Statistical analysis
Continuous variables were summarised as mean (stan-
dard deviation [SD]) or median (interquartile range 
[IQR]), and categorical variables were described using 
frequencies (percentages), both overall and by tertiles of 
UPF and UNPF intake. Missing data were imputed using 
multiple imputations with chained equations. Metabo-
lite, UPF, and UNPF data were log-transformed and SD-
scaled. We used Pearson’s correlation to examine the 
correlations among metabolites and between metabo-
lites, UPF, and UNPF intakes.

To identify metabolites related to UPF and UNPF 
intake while handling multicollinearity between metabo-
lites, elastic net-penalized linear regression models were 
fit to separately predict the intake of UPF and UNPF from 
134 metabolites [30]. We trained elastic net models on all 
available data using 10-fold cross-validation repeated 20 
times to obtain the best regularization parameters. The 



Page 5 of 14Kityo et al. Nutrition Journal           (2025) 24:21 

computed regularization parameters were applied to 
penalize the regression coefficients and select the impor-
tant metabolite features that correlated with the intake 
of each NOVA food group. Metabolites were penalized; 
however, age, sex, total energy intake, ethnicity, index of 
multiple deprivation, education level, income, physical 
activity, sleep duration, BMI, pre-existing diabetes, CVD, 
cancer, and medication intake were unpenalized. We 
chose these covariates following previous studies [10, 14, 
31].

To evaluate the collective effect of UPF-related metab-
olites on selected biochemical markers, we computed 
a UPF metabolite score (metabolomic signature) as the 
sum of the products of the coefficients obtained from the 
elastic net regression and the raw metabolite values [31].

UPF-metabolomic signature = ∑ n
1 (selected metabolite x β );

where β is the regression coefficient from the elastic net 
model, and n is the maximum number of metabolites 
selected by the model.

To assess the utility of the identified metabolites, we 
divided participants into high versus low UPF intake 
groups and determined whether the selected metabolites 

could effectively distinguish between high and low UPF 
consumers, independent of total energy intake. Initially, a 
baseline model incorporating covariates and total energy 
intake was built. Then, a second model that included 
UPF-related metabolites was developed. The adequacy 
index (AI) was calculated as the ratio of the log-like-
lihood for the baseline model to that of the model with 
metabolites. The additional predictive value provided by 
metabolites was quantified as (1-AI) × 100 [32].

We then used multivariate-adjusted quantile regres-
sion models to examine the association of UPF and 
UNPF with biochemical disease markers, adjusting for 
the covariates described above. We also tested the asso-
ciation between UPF intake-related metabolites and 
biochemical markers using multivariate-adjusted quan-
tile regression models. To evaluate the collective effects 
of UPF-related metabolites on disease biomarkers, the 
median values of the biochemical markers, per 1-SD of 
the UPF metabolomic signature, were determined using 
multivariate quantile regression.

Data analysis was conducted using the R software 
version 4.3.1 (R Foundation for Statistical Computing, 
Vienna, Austria). Statistical significance was defined as 
P < 0.05.

Results
Characteristics of study participants
Table 1 presents the participants’ general characteristics. 
The mean (SD) age of participants was 56 (8.0) years, the 
mean (SD) BMI was 26.9, and the majority were women, 
white by ethnicity, had completed college, earned 
£31,000–51,999, and were actively employed. In terms of 
lifestyle factors, a significant proportion of participants 
were current drinkers, never smoked, engaged in moder-
ate physical activity, and slept for 6–8 h a day. The mean 
(SD) total energy intake was 2,073 (683) kcal/day, and the 
median (IQR) proportions of UPF, UNPF, and PF in the 
total diet were 24 (16–35), 58 (45–68), and 4 (1–10) %, 
respectively. Among the participants, 2.1, 8.7, and 8.5% 
reported a medical diagnosis of CVD, cancer, and diabe-
tes, respectively, and more than three-quarters reported 
using medication.

The correlation matrix of the metabolites is displayed 
in Supplementary Fig.  1. Distinct correlated metabolic 
groups were observed, and notable correlations between 
the metabolites and the degree of food processing are 
detailed in Supplementary Fig. 2.

Participants’ characteristics according to UPF and UNPF 
intake
The characteristics of participants according to UPF 
intake are shown in Supplementary Table  2  A-C. The 
highest consumption of UPF was more prevalent among 
men, less educated, lowest income earners, Black 

Table 1 General characteristics of study participants
Characteristic n = 72,817
Demographic
Age, years, mean (SD) 56.0 (8.0)
Sex, women, % 39,814 (55.0)
Highest education level, College and above, % 34,514 (47.0)
Annual income, £, %
< 18,000 12,662 (17.0)
Actively employed, % 43,822 (60.0)
Index of multiple deprivation, median (IQR) -2.35 (-3.74, -0.01)
Ethnicity, White, % 70,276 (97.0)
Lifestyle
Alcohol intake, g/d, median (IQR) 0.0 (0.0, 26.0)
Current drinker 68,137 (93.6)
Current smoker 5,397 (7.4)
MET-min/week, median (IQR) 1,770 (836, 3,393)
Moderate exercise, % 60,034 (82.0)
Sleep duration, h/d, median (IQR) 7.00 (7.00, 8.00)
Sleep hours, 6–8, %
BMI, kg/m2, mean (SD) 26.9 (4.6)
Total energy intake, Kcal/d, mean (SD) 2,073 (683)
UPF, Median (IQR) 24.0 (16.0, 35.0)
UNPF, Median (IQR) 58.0 (45.0, 68.0)
Plausible energy reporting, % 70,269 (96.5)
Medical
CVD, % 1,544 (2.1)
Cancer, % 6,341 (8.7)
Diabetes, % 2,566 (3.5)
Use of medication, % 61,972 (85.0)
IQR, interquartile range, SD, standard deviation, CVD, cardiovascular disease, 
UPF, ultra-processed foods, UNPF, unprocessed/minimally processed foods
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participants, never drinkers and current smokers. In 
addition, highest UPF consumers exhibited lower physi-
cal activity levels, higher BMI, more total energy intake, 
and a higher prevalence of CVD, diabetes, and use of 
medication, but lower prevalence of cancer compared to 
lowest consumers. Reverse trends in participants’ charac-
teristics were observed according to UNPF intake.

Metabolites related to UPF and UNPF intake
The elastic net-selected metabolites related to UPF and 
UNPF intake are shown in Fig. 2 and Supplemental Table 
3. Ketone bodies (acetoacetate, acetone), high density 
lipoprotein (HDL) diameter, polyunsaturated fatty acids 
(PUFA) [docosahexaenoic acid, linoleic acid, w-3 FA], 
total lipids in large HDL, and valine were negatively 

correlated with UPF intake, whereas free cholesterol in 
extremely small very low density lipoprotein (VLDL), 
amino acids (glutamine, glycine), glycoprotein acetyls, 
lactate, saturated FA, and lipids (sphingomyelins, triglyc-
erides in large low density lipoprotein (LDL) and medium 
HDL) were positively correlated with UPF intake. Oppo-
site relationships were observed between UNPF and 
these metabolites, except for acetoacetate, albumin, and 
sphingomyelin. Serum metabolites correlated with UPF 
intake were largely reproduced when we restricted the 
sample to participants who only participated in baseline 
diet and metabolomic assessments (Supplementary Table 
4).

Fig. 2 Metabolites correlated with UPF and UNPF intake. Coefficients were computed using elastic net regularization, with UPF or UNPF as dependent 
variables and metabolites as predictors (penalized), while allowing age, sex, total energy intake, ethnicity, index of multiple deprivation, education level, 
income, physical activity, sleep duration, BMI, pre-existing diabetes, CVD, cancer and intake of medication. Dm, diameter; FA, fatty acid; L, large; M, me-
dium; TL, total lipids; XS extremely small

 



Page 7 of 14Kityo et al. Nutrition Journal           (2025) 24:21 

Association of UPF and UNPF intake with CRP, IGF-1, SHBG, 
and testosterone
Ultra-processed food intake was positively associated 
with CRP but negatively associated with IGF-1 levels. 
In contrast, UNPF intake was negatively associated with 
CRP and positively associated with IGF-1 and SHBG lev-
els (Fig. 3; Table 2).

Association between UPF -related metabolites with CRP, 
IGF-1, SHBG, and testosterone
The median values of biochemical markers per 1-SD 
increase in UPF-related metabolites are depicted in Fig. 4 
and Supplementary Table 5.

Amino acids
Elevated CRP negatively correlated with glutamine, gly-
cine, and valine. In addition, valine negatively correlated 
with IGF-1 and SHBG but positively correlated with tes-
tosterone levels. On the other hand, glutamine and gly-
cine were both inversely associated with testosterone 
levels, while glutamine was positively associated with 
SHBG levels.

Cholesterol
Elevated levels of CRP and IGF-1 correlated with large, 
but SHBG correlated with small HDL particles. However, 
free cholesterol in extremely small VLDL was elevated 
in participants with high levels of biochemical markers, 
with exception of IGF-1 which showed lower levels.

Fatty acids
Low levels of biochemical markers were reported in indi-
viduals with high saturated fatty acid levels. A similar 
trend was observed for w-3 FA, with exception of testos-
terone which was positively associated with high w-3 FA 
levels. On the other hand, linoleic and docosahexaenoic 
acid levels were positively correlated with IGF-1, SHBG, 
and testosterone levels. In terms of CRP, higher levels 

Table 2 Association of UPF and UPF-metabolomic signature 
with selected disease biochemical markers

UPF intake Me-
tabolomic 
signature

β (per 
1-SD)

95% CI β (per 1-SD) 95% CI

CRP 0.060 0.047, 0.073 1.4557 1.385, 
1.515

IGF-1 -0.0464 -0.060, -0.033 -3.1669 -4.493, 
-1.827

SHBG -0.0041 -0.018, 0.009 -13.8784 -15.291, 
-12.465

Testosterone 0.0028 -0.011, 0.016 -0.0566 -0.1252, 
0.0120

Regression coefficients were adjusted for age, sex, total energy intake, ethnicity, 
index of multiple deprivation, education level, income, physical activity, sleep 
duration, BMI, pre-existing diabetes, CVD, cancer, and intake of medication. 
CRP, c-reactive protein; IGF-1, insulin-like growth factor-1; SHBG, sex-hormone 
binding globulin

Fig. 3 Predicted median values of selected disease biochemical markers per 1-SD increase in UPF/UNPF intake. Predicted values were computed via 
quantile regression adjusted for age, sex, total energy intake, ethnicity, index of multiple deprivation, education level, income, physical activity, sleep 
duration, BMI, pre-existing diabetes, CVD, cancer, and intake of medication. IGF-1, insulin-like growth factor-1; UPF, ultra-processed food; CRP, c-reactive 
protein; SHBG, sex-hormone binding globulin; SD, standard deviation
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were reported with high docosahexaenoic acid and low 
linoleic acid levels.

Fluid balance and inflammation
We found a positive correlation between lactate and 
SHBG and testosterone. Glycoprotein acetyl was posi-
tively correlated with CRP and testosterone, but inversely 
correlated with IGF-1 and SHBG.

Ketone bodies
Acetoacetate was positively associated with high levels of 
CRP and SHBG, while acetone was positively associated 
with SHBG and inversely associated with CRP and IGF-1 
levels.

Other lipids
Triglycerides in large LDL positively correlated while 
CRP and IGF-1 but inversely correlated with SHBG and 

testosterone. However, TG in medium HDL inversely 
correlated with CRP and positively correlated with other 
markers. Furthermore, Total lipids in large HDL were 
positively associated with high levels of CRP and SHBG 
but lower levels of IGF-1 and testosterone. Sphingomy-
elins positively correlated with IGF-1 and SHBG, but 
inversely correlated with CRP and testosterone.

Association of the UPF-metabolomic signature with CRP, 
IGF-1, SHBG, and testosterone
The metabolomic signature of UPF strongly predicted 
CRP, IGF-1, SHBG, and testosterone levels compared 
with UPF intake alone (Fig. 5; Table 2).

The percentage of predictive information contributed 
by metabolites to the prediction of UPF intake is shown 
in Table 3. UPF-related metabolites accounted for 13% of 
the variation in UPF intake beyond total energy intake.

Fig. 4 Regression coefficients and 95% CI for the association of UPF-related metabolites and biochemical markers. Adjustments were made for age, sex, 
total energy intake, ethnicity, index of multiple deprivation, education level, income, physical activity, sleep duration, body mass index, pre-existing dia-
betes, cardiovascular disease, cancer, and medication intake. Abbreviations: Dm, diameter; FA, fatty acid; L, large; M, medium; TL, total lipids; XS, extremely 
small
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Discussion
Summary of findings
Ketone bodies, PUFA, HDL diameter, total lipids in 
large HDL, and valine decreased with high UPF intake, 
while free cholesterol in extremely small VLDL, gluta-
mine, glycine, glycoprotein acetyls, lactate, saturated 
FA, sphingomyelins, and triglycerides (n = 2) increased. 
These metabolites enhanced the prediction of UPF intake 
beyond total energy intake. UPF-related metabolites cor-
related with CRP, IGF-1, SHBG, and testosterone, with 
the UPF metabolomic signature more strongly associated 

Table 3 Prediction of UPF intake by metabolomic signature vs. 
energy intake

Base model Plus metabolites % New information
LR χ2 6079.63 6876.89 13%
C-statistic 0.662 0.673
Brier 0.230 0.227
Adequacy 0.870
LR X2, Log-likelihood ratio chi-square

Fig. 5 Predicted median values of selected disease biochemical markers. Values are calculated per 1-SD increase in UPF-metabolomic signature, adjusted 
for age, sex, total energy intake, ethnicity, index of multiple deprivation, education level, income, physical activity, sleep duration, BMI, pre-existing diabe-
tes, CVD, cancer and intake of medication. CRP, c-reactive protein; IGF-1, insulin-like growth factor-1; SHBG, sex-hormone binding globulin
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with CRP and inversely with IGF-1 and SHBG than UPF 
intake alone.

Interpretation
Fatty acid metabolites correlated with UPF intake
Few studies incorporated the degree of food processing 
during identification of diet-related metabolites, with 
some reporting findings that are generally consistent with 
ours [16]. Unsaturated FA (Docosahexaenoic acid, w-3, 
linoleic acid) were inversely correlated with high UPF 
intake [14, 33]. Dietary sources of unsaturated fatty acids 
include fatty fish, seafood, nuts, and seeds [34, 35], which 
do not typically constitute UPF. In contrast, saturated FA 
were associated with high UPF intake, consistent with a 
high saturated FA composition of UPF [36–38].

Cholesterol and other lipids correlated with UPF intake
We found altered lipoprotein profiles with increased UPF 
consumption, which is supported by previous reports 
that UPF intake is associated with elevated triglycerides 
[39, 40] and LDL cholesterol [41], low HDL cholesterol 
[39–41], and incident dyslipidemia [42]. With respect to 
lipoprotein subclasses, an UPF diet was inversely associ-
ated with HDL particle size [43]. Simple sugars, refined 
starches, and added sugars in UPF have been shown to 
increase small, dense LDL levels [67] and triglyceride 
concentrations [44, 45] via enhanced lipogenesis [46]. 
Moreover, phthalates in UPF packaging materials are 
associated with dyslipidemia [47]. The increase in cir-
culating sphingomyelins with high UPF intake is likely 
linked to dietary sources of these metabolites such as 
processed milk, cream, butter, and cheese [48]. Addition-
ally, high saturated FA in UPF can activate genes involved 
in synthesis of ceramides, which are precursors to sphin-
gomyelin biosynthesis [49].

Ketone bodies and amino acids correlated with UPF intake
Ketone bodies (acetoacetate, acetone) were negatively 
correlated with UPF consumption. Low circulating 
ketone bodies result from ample digestible carbohydrates 
(e.g., sugars, starches) and high systemic insulin levels 
linked to high-UPF diets [38, 50]. On the other hand, 
amino acids (high glutamic acid and low valine lev-
els) were related to high UPF intake [15]. Glutamine is 
derived from glutamate [51] in monosodium glutamate 
rich UPF [52]. Low valine levels with UPF consumption 
suggest a deficiency of this essential amino acid in UPF 
diets.

Inflammatory metabolites correlated with UPF intake
High levels of the proinflammatory glycoprotein ace-
tyl [53] with high UPF intake agrees with low levels of 
this marker among individuals with high intake of high-
quality diets [35, 54]. Moreover, a positive association 

of proinflammatory cytokines and high UPF intake has 
been previously reported [10]. Emulsifiers in UPF (car-
boxymethylcellulose and polysorbate-80), may induce 
inflammation via microbiota dysregulation [54–57], and 
typical UPF packaging materials contain bisphenol A 
[58], an endocrine-disrupting chemical associated with 
inflammation and oxidative stress [59].

Association of UPF and UPF-related metabolites with CRP, 
IGF-1, SHBG, and testosterone
High intake of UPF was positively correlated with CRP 
and inversely correlated with IGF-1. In line with our 
findings, high UPF was positively correlated with several 
biomarkers of inflammation [10]. Moreover, a random-
ized controlled trial (RCT) showed that high UPF intake 
caused high levels of CRP, excessive energy, carbohydrate 
and fat intake, and excessive energy intake which are 
indicative of inflammation [60]. Increased free fatty acids 
due to high UPF intake was also reported in a RCT [60]. 
High circulating free fatty acids and other lipids associ-
ated with UPF intake may suppress growth hormone-
induced synthesis of IGF-1 [61]. On the other hand, 
UPF-related metabolites were associated with biochemi-
cal markers of inflammation, growth, and reproductive 
function, suggesting that UPF may moderate specific 
upstream metabolites, resulting in regulation of down-
stream pathways involving inflammation, insulin-signal-
ing, steroids, and hormonal regulation.

Association of ketone bodies and amino acids with 
biochemical markers
Acetoacetate was positively associated with high levels of 
CRP and IGF-1, while acetone was positively associated 
with IGF-1 and inversely associated with CRP and testos-
terone levels. Ketone bodies moderate short-term oxida-
tive and inflammatory reactions [62], but also mitigate 
inflammation by dampening NFkB and inflammasome 
activity [50]. Glycine and glutamine contribute to reduc-
tion of inflammation [63, 64]. However, branched-chain 
amino acids such as valine are linked to cardiometabolic 
diseases, indicating proinflammatory effects [65, 66].

Lipid metabolites associated with biochemical markers
Polyunsaturated FA were generally inversely correlated 
with the inflammatory marker CRP [53], and positively 
associated with IGF-1, and reproductive biomarkers. 
Polyunsaturated FA are associated with lower levels 
of inflammation via regulation of cytokine production 
[67–69]. However, elevated CRP alongside high doco-
sahexaenoic acid levels was unexpected, considering its 
anti-inflammatory effects. This observation might be 
explained by DHA supplementation in individuals with 
inflammatory diseases.
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Associations of PUFAs with IGF-1 may be linked to 
their genetic regulation of IGF-1 biosynthesis [18]. Posi-
tive associations of fatty acids with reproductive bio-
markers may be due to activation of biosynthesis of 
the fatty acids by sex hormones [70], and may reflect a 
favourable lipid profile associated with SHBG as previ-
ously reported [71]. The association of low saturated FA 
with high CRP may be explained by decreased consump-
tion of these FA in chronic disease states, given the popu-
lar connection between saturated fats and CVD risk.

Lipoprotein components (cholesterol in extremely 
small VLDL and triglycerides in large LDL) positively 
correlated while CRP. Altered lipid profiles typically 
accompany inflammation [72]. In terms of IGF-1, lipo-
protein components (HDL diameter, TG in medium HDL 
and large LDL, and sphingomyelins) positively correlated 
with IGF-1. In contrast, cholesterol in extremely small 
VLDL, and total lipids in large HDL were associated with 
low IGF-1 levels. Lipids influence IGF-1 via moderation 
of hepatic synthesis [73].

Insulin-like growth factor-1 is synthesized in the liver, 
adipose tissue, and skeletal muscles through growth hor-
mone (GH) stimulation, promoting somatic growth, cell 
proliferation, and protein synthesis [74]. Our results sug-
gest that UPF-related metabolites are involved in the reg-
ulation of GH activity. Increased levels of circulating lipid 
species and acetoacetate with an increase in IGF-1 may 
reflect GH-induced lipolysis, lipid oxidation, and regula-
tion of lipoprotein metabolism [61].

With respect to SHBG, our results are consistent with 
a previous cross-sectional study that showed strong posi-
tive associations of SHBG with various lipid metabolites, 
especially those beneficial to cardiometabolic health 
[71]. SHBG is a sex hormone-specific binding glycopro-
tein responsible for transporting sex steroids and con-
sequently regulating circulating free testosterone and 
estrogen. Low SHBG has been linked to insulin resistance 
and type 2 diabetes [71], and cardiovascular outcomes 
through moderation of lipid metabolites [75]. Consider-
ing the opposite association of the same lipid metabolites 
with circulating testosterone, our findings suggest that 
sex hormone availability may be a link through which 
UPF intake may be associated with cardiometabolic dis-
ease risk.

Association glycoprotein acetyl with biochemical markers
Glycoprotein acetyl positively correlated with CRP and 
testosterone, but inversely with IGF-1 and SHBG levels. 
Glycoprotein acetyl is a biomarker of inflammation [53]. 
Moreover, the association between several inflammatory 
biomarkers and IGF-1 has been previously reported [19]. 
IGF-1 has been shown to moderate macrophage function 
and inflammatory activity [76]. On the other hand, SHBG 

has been shown to exhibit anti-inflammatory properties 
[71].

To our knowledge, we are the first to broadly exam-
ine the metabolomic profile of UPF intake in relation 
to biomarkers of inflammation, insulin signaling, and 
reproductive function. Our results suggest that high UPF 
consumption may alter specific metabolic pathways, such 
as a reduction in PUFA, anti-inflammatory amino acids, 
and beneficial lipoprotein composition; and an increase 
in inflammatory proteins and triglycerides. The altera-
tion of systemic metabolites may be linked to low-grade 
inflammation, dysregulation of insulin signaling, and 
sex hormone bioavailability, suggesting potential bio-
logical mechanisms by which UPF consumption promote 
adverse health outcomes. These findings emphasize det-
rimental effects of UPF consumption on metabolic health 
and suggest that limiting UPF consumption and promot-
ing UNPF intake may improve metabolic health in the 
general population.

Strengths and limitations
In this large cross-sectional analysis, we explored the 
metabolome across different levels of food processing. 
Utilizing a comprehensive metabolomics database, we 
explored metabolomic profiles at different levels of food 
processing, revealing no overlap between metabolites 
related to UPF and UNPF, suggesting specificity of identi-
fied metabolites, and potential utility of identified metab-
olites as biomarkers of UPF consumption. Metabolites 
potentially circumvented biases and dietary measure-
ment errors inherent in self-reported diet, and misclas-
sification bias associated with the NOVA system [77]. 
Elastic net regression improved model predictability, 
effectively handled multicollinearity, and facilitated joint 
modeling of metabolites without correction for multiple 
tesing [78]. Investigating associations with downstream 
biochemical biomarkers of cardiometabolic diseases 
provided insights into mechanisms underlying the links 
between UPF consumption and disease. We emphasized 
the role of metabolites in enhancing the diet-disease rela-
tionship beyond questionnaire-reported intake.

However, this study had limitations. The major limita-
tion was the use of metabolites measured by a targeted 
metabolomics approach, suggesting that some UPF-
related metabolites could not be identified, making com-
parisons with previous studies challenging. The NMR 
platform used in the UK biobank primarily captured 
large molecular, and high-concentration metabolites 
[79–81], which limited the variety of identified UPF-
related metabolites. Furthermore, dynamic relationships 
between UPF consumption and metabolites could not be 
evaluated in a cross-sectional study, but previous studies 
support the stability of diet-metabolite relationships over 
time. Unmeasured confounding factors deserve mention 
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since they are characteristic of nutritional epidemiologi-
cal studies. Furthermore, we could not evaluate diverse 
sex hormones, such as estradiol, which were measured in 
a limited number of women. Finally, the cross-sectional 
design of our study precluded causal conclusions.

Conclusions
Using the UK Biobank, we showed that metabolites span-
ning multiple pathways were specifically correlated with 
UPF intake, indicating their potential use as objective 
markers of UPF intake. These metabolites were related to 
selected biomarkers of systemic inflammation, cell pro-
liferation, insulin signaling, and sex hormone regulation, 
suggesting that UPF may be linked to disease pathophysi-
ology by moderating inflammation, insulin signaling, cell 
proliferation, and the regulation of sex hormone bioavail-
ability and function.
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